

ARM<sup>®</sup> Cortex<sup>™</sup>-M0

32-bit microcontroller

2.4G RF transceiver

# HSMicro HS6207™ Series Technical Reference Manual

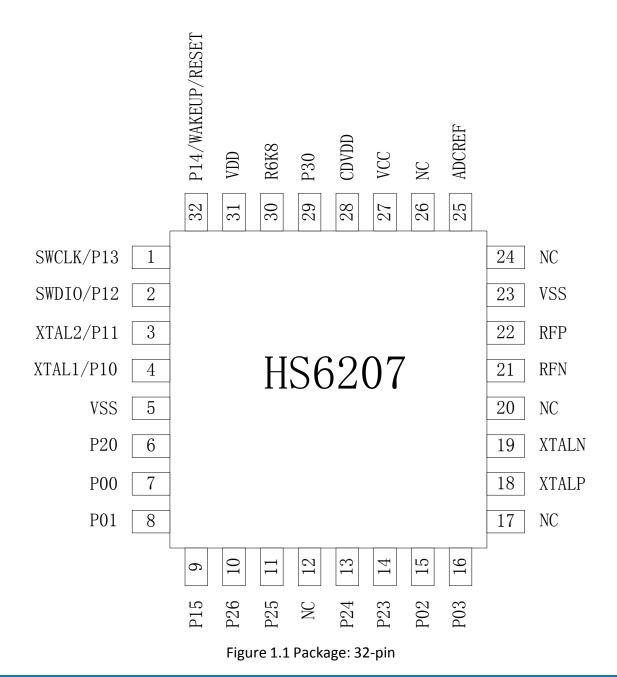
## Version 1.1



| 1 | 目え   | 录      |                                                                                          |     |
|---|------|--------|------------------------------------------------------------------------------------------|-----|
| 1 | HS62 | 207    |                                                                                          | 4   |
| - | 1.1  |        | Configuration                                                                            |     |
|   | 1.2  |        | Description                                                                              |     |
|   |      | 1.2.1  | I/O Function                                                                             |     |
|   |      |        | Function Description                                                                     |     |
| 2 | MCL  |        |                                                                                          |     |
|   | 2.1  |        | neral Description                                                                        |     |
|   | 2.2  |        | iture                                                                                    |     |
|   | 2.3  |        | ck Diagram                                                                               |     |
|   | 2.4  |        | nctional Description                                                                     |     |
|   |      | 2.4.1  | ARM <sup>®</sup> Cortex™-M0 core                                                         | 10  |
|   |      | 2.4.2  | Memory Map                                                                               |     |
|   |      | 2.4.3  | Watchdog Timer (WDT Base address = 0x4780 0000)                                          |     |
|   |      | 2.4.4  | Timer (Timer0 Base address = 0x4680_0000; Timer1 Base address = 0x4680_0100)             |     |
|   |      | 2.4.5  | Capture/PWM (PWM Base address = 0x4280 0000)                                             |     |
|   |      | 2.4.6  | Universal Asynchronous Receiver/Transmitter (UART) with modem control (UARTO Base a      |     |
|   |      | 0x448  | 0_0000; UART1 Base address = 0x4500_0000; UART2 Base address = 0x4580_0000)              |     |
|   |      | 2.4.7  | Inter-Integrated Circuit (I <sup>2</sup> C) Controller (I2C0 Base address = 0x4800_0000) | 35  |
|   |      | 2.4.8  | Analog-to-Digital Converter (ADC) (ADC Base address = 0x4300_0000)                       |     |
|   |      | 2.4.9  | System Configuration (SYSCON Base address = 0x5000_0000)                                 |     |
|   |      | 2.4.10 | Flash Memory Controller (FMC) (FMC Base address = 0x4980 0000)                           |     |
|   |      |        | General Purpose I/O (GPIO) (GPIO) Base address = 0x5200 0000; GPIO1 Base address =       |     |
|   |      |        | 0 0000; GPIO2 Base address = 0x5300 0000; GPIO3 Base address = 0x5380 0000)              | 64  |
|   |      |        | Nested Vectored Interrupt Controller (NVIC Base address = 0xE000 E000)                   |     |
|   |      |        | System Control Block (SCB Base address = 0xE000_E000)                                    |     |
|   |      |        | System timer (SysTick Base address = 0xE000_E000)                                        |     |
|   |      | 2.4.15 | User Configuration (Base address = 0x1000_0000)                                          |     |
| 3 | RF   |        |                                                                                          | 96  |
|   | 3.1  | Int    | roduction                                                                                | 96  |
|   |      | 3.1.1  | Features                                                                                 | 97  |
|   |      | 3.1.2  | Block                                                                                    | 98  |
|   | 3.2  | Rad    | dio Control                                                                              | 99  |
|   |      | 3.2.1  | Operational Modes                                                                        | 99  |
|   |      | 3.2.2  | Air data rate                                                                            | 101 |
|   |      | 3.2.3  | RF channel frequency                                                                     | 102 |
|   |      | 3.2.4  | Received Power Detector measurements                                                     | 102 |
|   |      | 3.2.5  | PA control                                                                               | 102 |
|   |      | 3.2.6  | RX/TX control                                                                            | 103 |
|   | 3.3  | Pro    | tocol Engine                                                                             | 103 |
|   |      | 3.3.1  | Features                                                                                 | 103 |
|   |      | 3.3.2  | Protocol engine overview                                                                 |     |
|   |      | 3.3.3  | Protocol engine packet format                                                            |     |
|   |      | 3.3.4  | Automatic packet transaction handling                                                    |     |
|   |      | 3.3.5  | Protocol engine flowcharts                                                               |     |
|   |      | 3.3.6  | MultiSlave                                                                               |     |
|   |      | 3.3.7  | Protocol engine timing                                                                   |     |
|   |      | 3.3.8  | Protocol engine transaction diagram                                                      |     |
|   | 3.4  | Dat    | ta and control interface                                                                 | 120 |



|          | 3.4.1    | Features                      | 121 |
|----------|----------|-------------------------------|-----|
|          | 3.4.2    | Functional description        | 121 |
|          | 3.4.3    | SPI operation                 | 121 |
|          | 3.4.4    | Data FIFO                     | 123 |
|          | 3.4.5    | Interrupt                     | 124 |
| 3.5      | Re       | gister map                    | 125 |
|          | 3.5.1    | Register map table            | 125 |
| 3.5.1.1  | CO       | NFIG (RW) Address: 00h        | 125 |
| 3.5.1.2  | EN       | _AA (RW) Address: 01h         | 125 |
| 3.5.1.3  | EN       | _RXADDR (RW) Address: 02h     | 126 |
| 3.5.1.4  | SET      | UP_AW (RW) Address: 03h       | 126 |
| 3.5.1.5  | SET      | UP_RETR (RW) Address: 04h     | 127 |
| 3.5.1.6  | RF_      | _CH (RW) Address: 05h         | 127 |
| 3.5.1.7  | RF_      | _SETUP (RW) Address: 06h      | 127 |
| 3.5.1.8  | STA      | ATUS (RW) Address: 07h        | 128 |
| 3.5.1.9  | OB       | SERVE_TX (RW) Address: 08h    |     |
| 3.5.1.10 | RPI      | D Address: 09h                | 129 |
| 3.5.1.11 | RX_      | _ADDR_P0 (RW) Address: 0Ah    | 129 |
| 3.5.1.12 | -        | _ADDR_P1 (RW) Address: 0Bh    |     |
| 3.5.1.13 | RX_      | _ADDR_P2 (RW) Address: 0Ch    | 130 |
| 3.5.1.14 | -        | _ADDR_P3 (RW) Address: 0Dh    |     |
| 3.5.1.15 | RX_      | _ADDR_P4 (RW) Address: 0Eh    | 130 |
| 3.5.1.16 | -        | _ADDR_P5 (RW) Address: 0Fh    |     |
| 3.5.1.17 | _        | _ADDR(RW) Address: 10h        |     |
| 3.5.1.18 | -        | _PW_P0 (RW) Address: 11h      |     |
| 3.5.1.19 | -        | _PW_P1 (RW) Address: 12h      |     |
| 3.5.1.20 | -        | _PW_P2 (RW) Address: 13h      |     |
| 3.5.1.21 | -        | _PW_P3 (RW) Address: 14h      |     |
| 3.5.1.22 | -        | _PW_P4 (RW) Address: 15h      |     |
| 3.5.1.23 | -        | _PW_P5 (RW) Address: 16h      |     |
| 3.5.1.24 |          | O_STATUS (RW) Address: 17h    |     |
| 3.5.1.25 |          | NPD (RW) Address: 1Ch         |     |
| 3.5.1.26 |          | ATURE (RW) Address: 1Dh       |     |
| 3.5.1.27 |          | UP_VALUE (RW) Address: 1Eh    |     |
| 3.5.1.28 |          | E_GURD (RW) Address: 1Fh      |     |
| 4 Elect  |          | aracteristics                 |     |
|          | 4.1.1    | Absolute Maximum Rating       |     |
|          | 4.1.2    | DC Electrical Characteristics |     |
|          | 4.1.3    | AC Electrical Characteristics |     |
|          | 4.1.4    | Rf performance                |     |
|          | 4.1.5    | ypical Crystal                |     |
|          | 4.1.6    | Analog to digital conversion  |     |
| 5 Pack   | age Info | prmation                      | 141 |




## 1 HS6207

The HS6207 is a member of the low-cost, high-performance family of intelligent 2.4 GHz RF transceivers with 32bit embedded microcontrollers. The HS6207 is optimized to provide a single chip solution for Ultra Low Power (ULP) wireless applications. The combination of processing power, memory, low power oscillators, real-time counter, and a range of power saving modes provides an ideal platform for implementation of RF protocols.

Benefits of using HS6207 include tighter protocol timing, security, lower power consumption and improved co-existence performance. For the application layer the HS6207 offers a rich set of peripherals including: I2C, UART, PWM, ADC and so on.

## 1.1 Pin Configuration



Rev: v1.1



## 1.2 Pin Description

## 1.2.1 **I/O Function**

| Pi | n number      |     |      |      | Func | tion Sy | mbol     |      |       |
|----|---------------|-----|------|------|------|---------|----------|------|-------|
| 32 | Configuration | 0   | 1    | 2    | 3    | 4       | 5        | 6    | 7     |
| 1  | SWD_CLK       | P13 | RXD0 | TXD1 | RXD2 | SDA     | SSP_MISO | CTS1 | PWM2B |
| 2  | SWD_DAT       | P12 | TXD0 | RXD1 | TXD2 | SCL     | SSP_SS   | RTS0 | PWM2A |
| 3  | XTAL2         | P11 | RXD0 | TXD1 | RXD2 | SDA     | SSP_CLK  | CTS0 | PWM3B |
| 4  | XTAL1         | P10 | TXD0 | RXD1 | TXD2 | SCL     | SSP_MOSI | RTS1 | PWM3A |
| 5  | VSS           |     |      |      |      |         |          |      |       |
| 6  | SWD_CLK       | P20 | RXD0 | TXD1 | RXD2 | SDA     | SSP_MISO | CTS1 | PWM1A |
| 7  | SWD_DAT       | P00 | TXD0 | RXD1 | TXD2 | SCL     | SSP_SS   | RTS0 | PWM0A |
| 8  | SWD_CLK       | P01 | RXD0 | TXD1 | RXD2 | SDA     | SSP_CLK  | CTS0 | PWM0B |
| 9  | SWD_DAT       | P15 | TXD0 | RXD1 | TXD2 | SCL     | SSP_MOSI | RTS1 | PWM1B |
| 10 | SWD_CLK       | P26 | RXD0 | TXD1 | RXD2 | SDA     | SSP_MISO | CTS1 | PWM2B |
| 11 | SWD_DAT       | P25 | TXD0 | RXD1 | TXD2 | SCL     | SSP_SS   | RTS0 | PWM2A |
| 12 | NC            |     |      |      |      |         |          |      |       |
| 13 | SWD_DAT       | P24 | RXD0 | TXD1 | RXD2 | SDA     | SSP_CLK  | CTS2 | PWM3A |
| 14 | SWD_CLK       | P23 | TXD0 | RXD1 | TXD2 | SCL     | SSP_MOSI | RTS2 | PWM3B |
| 15 | SWD_DAT       | P02 | RXD0 | TXD1 | RXD2 | SDA     | SSP_MISO | CTS2 | ADC0  |
| 16 | SWD_CLK       | P03 | TXD0 | RXD1 | TXD2 | SCL     | SSP_SS   | RTS2 | ADC1  |
| 17 | NC            |     |      |      |      |         |          |      |       |
| 18 | XTALP         |     |      |      |      |         |          |      |       |
| 19 | XTALN         |     |      |      |      |         |          |      |       |
| 20 | NC            |     |      |      |      |         |          |      |       |
| 21 | RFN           |     |      |      |      |         |          |      |       |
| 22 | RFP           |     |      |      |      |         |          |      |       |
| 23 | VSS           |     |      |      |      |         |          |      |       |
| 24 | NC            |     |      |      |      |         |          |      |       |
| 25 | ADCREF        |     |      |      |      |         |          |      |       |
| 26 | NC            |     |      |      |      |         |          |      |       |
| 27 | VCC           |     |      |      |      |         |          |      |       |
| 28 | CDVDD         |     |      |      |      |         |          |      |       |
| 29 | SWD_CLK       | P30 | TXD0 | RXD1 | TXD2 | SCL     | SSP_SS   | RTS2 | PWM0A |
| 30 | R6K8          |     |      |      |      |         |          |      |       |
| 31 | VDD           |     |      |      |      |         |          |      |       |
| 32 | Reset/Wakeup  | P14 | TXD0 | RXD1 | TXD2 | SCL     | SSP_MOSI | RTS1 | PWM1A |

Table1.2.1 I/O Description



## 1.2.2 Function Description

| Function Symbol | Description                                              |
|-----------------|----------------------------------------------------------|
| PWMxA           | PWM Group x channel A pin.                               |
| PWMxB           | PWM Group x channel B pin.                               |
| TXDx            | UART x transmit data pin.                                |
| RXDx            | UART x receive data pin.                                 |
| CTSx            | Clear to Send input pin for UART x.                      |
| RTSx            | Request to Send output pin for UART x.                   |
| SCL             | IIC interface clock pin.                                 |
| SDA             | IIC interface data pin.                                  |
| SSP_CLK         | SSP interface. (SSP clock pin)                           |
| SSP_MISO        | SSP interface. (Mast - In - Slave - Out)                 |
| SSP_MOSI        | SSP interface. (Mast - Out - Slave - In)                 |
| SSP_SS          | SSP interface. (SSP slave select pin)                    |
| ADCx            | 12-bit SAR ADC channel x input pin.                      |
| XTALP           | Crystal Pin p for RF                                     |
| XTALN           | Crystal Pin n for RF                                     |
| XTAL2           | Crystal Pin 2 for M0                                     |
| XTAL1           | Crystal Pin 1 for M0                                     |
| RFN             | Antenna interface 1                                      |
| RFP             | Antenna interface 2                                      |
| VSS             |                                                          |
| ADCREF          | Reference voltage. Connect a 100nFcapacitor to ground.   |
| NC              |                                                          |
| VCC             |                                                          |
| CDVDD           | Internal digital supply output for de-coupling purposes. |
| R6K8            |                                                          |
| VDD             |                                                          |

#### Table 1.2.2 Function Description

## 2 MCU

## 2.1 General Description

The HSMicro HS6207 series are low-cost 32-bit microcontroller with embedded ARM<sup>®</sup> Cortex<sup>™</sup>-M0 core for industrial control and applications which need high performance, high-integration low cost requirements.



The HSMicro HS6207 series can run up to 25MHz. The HSMicro HS6207 series provides 28Kbytes embedded program flash, flexibility data flash (Shared with program flash) and fixed 3Kbytes boot code address for the ISP and 2Kbytes embedded SRAM.

Many system level peripheral functions, such as GPIO ports, Timer, UART, SSP, IIC, PWM, Watchdog Timer, 12-bits SAR ADC and low voltage detector, have been incorporated into the HSMicro HS6207 series. The useful functions make the HSMicro HS6207 series powerful for a wide range of applications.

Additionally, the HSMicro HS6207 series is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, which allow the user to update the embedded program and data flash without removing the chip from the actual end product.



## 2.2 Feature

## > Core

- ARM<sup>®</sup> Cortex<sup>™</sup>-M0 core runs up to 25MHz
- Built-in Nested Vectored Interrupt Controller (NVIC)
- Built-in 24-bit system tick timer
- A single-cycle 32-bit hardware multiplier
- Supports Serial Wire Debug (SWD) interface and 2 watchpoints / 4 breakpoints

## > Memory

- Embedded Flash memory
  - ✓ 28Kbytes on-chip flash memory
  - ✓ Flexibility data flash
  - Fixed 3 Kbytes boot memory map for ISP application
  - ✓ Minimum 100,000 program/erase cycles
  - Minimum 10 years data retention
- 2KByte on-chip SRAM.

## Clock Control

- Programmable system clock source.
- External crystal input (up to 25Mhz)
- Internal 22.1184MHz high speed oscillator (+-2% @ 25°C)
- Internal 10KHz low speed oscillator

## ≻ I/O Port

- Up to 25 general-purpose I/O(GPIO) pins
- I/O pin configuration:
  - ✓ Quasi-bidirectional (Pull-up Enable)
  - ✓ Push-Pull (Output)
  - ✓ Open drain (Pull-up Disable)
  - Input only (High-impedance)
  - ✓ Analog input for ADC
- I/O pin can be configured as interrupt source with edge/level setting
- High ESD: over 8KV

## > Timer

Provides two channel 32/16 bits timer

- Independent clock source for each timer
- Selectable One-shot mode, Periodic timer mode or Free-running mode

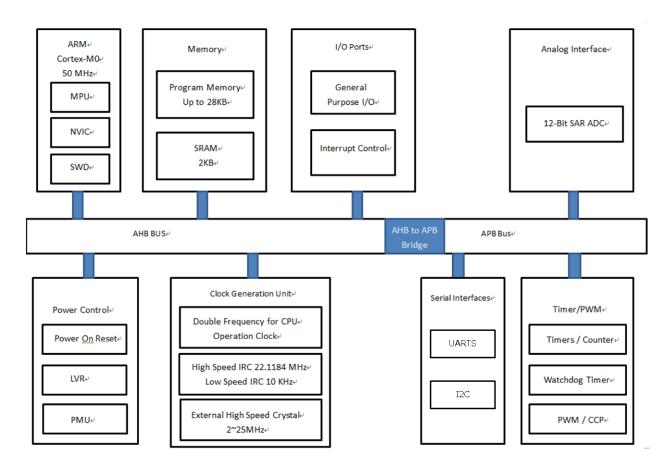
## Watchdog Timer

- clock source is internal 10KHz
- 32-bit free running counter
- Selectable timer-out interval

## Capture/ PWM

- Built-in four 16-bit PWM generators
- 8-channels PWM output
- Clock divider for four PWM generator
- Support 16-bit digital Capture mode with rising/falling/rising to falling/falling to rising capture input
- > UART
  - Three sets UART interface
  - Compatible with industry-standard 16C450 and 16550A UARTs
  - Programmable baud-rate generator
  - Internal 16 Bytes TXFIFO, 16 Bytes RXFIFO
  - IrDA modulation/Demodulation

## > I2C


- One I2C interface
- Supports master/slave mode
- Support 7-bit/10-bit addressing



- Support Multi-master
- Programmable clocks allow versatile rate control
- Supports Fast-mode Plus (up to 1 Mbit/s),
  Fast-mode (up to 400 Kbit/s) and
  Standard-mode (up to 100 Kbit/s)
- > ADC
  - 12-bit SAR ADC with 200ksps
  - Up to 8 channel single-ended input.
  - Supports single mode/continuous scan mode
  - Each channel with an individual result registers
- Flash Memory Controller (FMC)

## 2.3 Block Diagram

- Build-in internal Flash controller for
  In-Application-Programming (IAP)
- Power Management Unit
- Support Deep Power down mode
- Support Low speed mode
- Support Sleep mode





## 2.4 Functional Description

#### 2.4.1 **ARM<sup>®</sup> Cortex<sup>™</sup>-M0 core**

The CortexTM - M0 processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processors. The profile supports two modes – Thread and Handler modes. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and be entered as a result of an exception return.

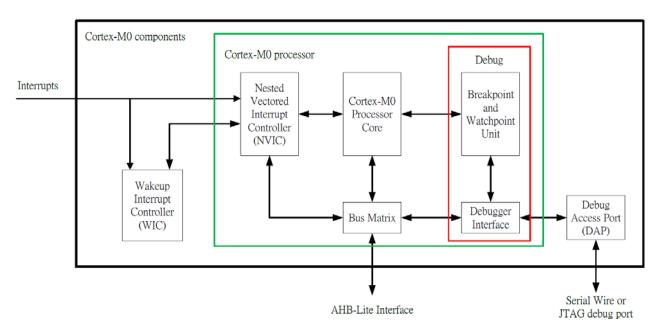



Figure 2.4.1 Cortex-M0 Function Block Diagram

The implemented device provides:

A low gate count processor the features:

- The ARMv6-M Thumb instruction set.
- Thumb-2 technology.
- ARMv6-M compliant 24-bit SysTick timer.
- A 32-bit hardware multiplier. (Single cycle)
- The system interface supports little-endian data accesses.
- The ability to have deterministic, fixed-latency, interrupt handing.
- C Application Binary Interface compliant exception model.

This is the ARMv6-M, C application Binary Interface(C-ABI) compliant exception model that enables



the use of pure C functions as interrupt handlers.

• Low power sleep mode entry using wait for interrupt, wait for event instructions, or the return from interrupt sleep-on-exit feature.

NVIC features:

- 32 external interrupt inputs, each with four levels of priority.
- Dedicated non-Maskable Interrupt (NMI) input.
- Support for both level-sensitive and pulse-sensitive interrupt lines.
- Wake-up Interrupt Controller (WIC), supports ultra-low power sleep mode.

Debug support:

- Four hardware breakpoints.
- Two watch points.
- Program Counter Sampling Register (PCSR) for non-intrusive code profiling.
- Single step and vector catch capabilities.

Bus interface:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory.
- Single 32-bit slave port that supports the Debug Access Port. (DAP)

#### 2.4.2 **Memory Map**

HSMicro HS6207 series provides a 4G–byte Address space. The memory locations assigned to each on-chip modules are shown as below Table. The detailed register memory addressing and programming will be described in the following sections for individual on-chip peripherals. HSMicro HS6207 series only support little-endian data format.



|        |                        |             |     | Private peripherals                  | 0xE000_EF04 |
|--------|------------------------|-------------|-----|--------------------------------------|-------------|
|        |                        |             | ſ   | Nested Vectored Interrupt Controller | 0xE000_EF00 |
|        |                        |             |     | System Control Block                 | 0xE000_ED00 |
|        |                        |             | ·   | Nested Vectored Interrupt Controller | 0xE000 E100 |
|        |                        |             |     | SysTick system timer                 | 0xE000_E010 |
|        |                        |             | il  | System Control Block                 | 0xE000_E008 |
|        |                        |             |     | AHB peripherals                      | 0x5400_0000 |
| 4 GB   | Reserved               | OxFFFF_FFFF | i ſ | GPIO3 Control                        | 0x5380_0000 |
| 2      | Reserved               | 0xE010_0000 |     | GPIO2 Control                        | 0x5300_0000 |
|        | Private Peripheral Bus | 4           |     | GPIO1 Control                        | 0x5280_0000 |
| L      | Thvac Tempicial Dus    | 0xE000_0000 |     | GPIO0 Control                        | 0x5200_0000 |
| 2      | Reserved               | 2           |     | Reserved                             | 0x5080_0000 |
| Ĺ      | Reserved               | 0x5200_0000 |     | System Configuration                 | 0x5000_0000 |
|        | AHB peripherals        | 0x5000_0000 |     |                                      |             |
| 2      | Reserved               | < _         | ~   | APB peripherals                      | 0x4A00_0000 |
| Ĺ      | ACSCIVES.              | 0x4A00_0000 | ſ   | Flash Memory Control                 | 0x4980_0000 |
|        | APB peripherals        | <b>4</b>    | .   | Reserved                             | 0x4900_0000 |
| 1 GB   | The peripherals        | 0x4000_0000 |     | Reserved                             | 0x4880_0000 |
| <      | Reserved               | <           |     | I2C0 Control                         | 0x4800_0000 |
| Ĺ      |                        | 0x2000_0800 |     | WDT Timer Control                    | 0x4780_0000 |
| 0.5 GB | 2KB SRAM               | 0x2000_0000 |     | Reserved                             | 0x4700_0000 |
| <      | Reserved               | <           |     | Timer0/Timer1 Control                | 0x4680_0000 |
| Ĺ      |                        | 0x0000_7C00 | L   | Reserved                             | 0x4600_0000 |
| L      | 3KB ISP on-chip-flash  | 0x0000_7000 |     | UART2 Control                        | 0x4580_0000 |
| L      | 28KB on-chip- flash    | 0x0000_6000 |     | UART1 Control                        | 0x4500_0000 |
| L      | 24KB on-chip- flash    | 0x0000_5000 |     | UART0 Control                        | 0x4480_0000 |
| L      | 20KB on-chip- flash    | 0x0000_4000 |     | Reserved                             | 0x4400_0000 |
| L      | 16KB on-chip- flash    | 0x0000_3000 |     | Reserved                             | 0x4380_0000 |
|        | 12KB on-chip- flash    | 0x0000_2000 |     | ADC Control                          | 0x4300_0000 |
|        | 8KB on-chip- flash     | 0x0000_1000 |     | Capture/PWM (CCP) Control            | 0x4280_0000 |
| 0 GB   | 4KB on-chip- flash     | 0x0000_0000 | Ĺ   | Reserved                             | 0x4000_0000 |

Figure 2.4.2 Memory Map



#### 2.4.3 Watchdog Timer (WDT Base address = 0x4780\_0000)

The purpose of Watchdog timer is to perform a system self-reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, Watchdog timer also supports another function to wake up from deep sleep mode.

The watchdog monitors the interrupt and asserts reset signal, when the counter reaches 0, and the counter is stop. On next enable clock edge, the counter is reloaded form the WDTLOAD Register and the countdown sequence continues. If the interrupt is not clear by the time that the counter next reached 0, then timer reasserts the reset signal.

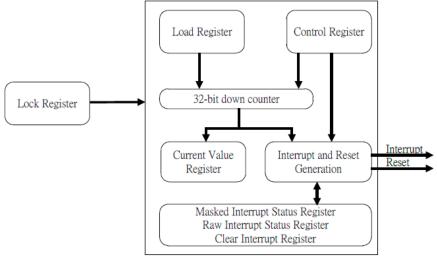



Figure 2.4.3 Watchdog Block Diagram

| Name    | Offset | Access | Description                               | Reset value |
|---------|--------|--------|-------------------------------------------|-------------|
| WDTCON  | 0x000  | R/W    | Watchdog Control Register                 | 0x0         |
| WDTLOAD | 0x004  | R/W    | Watchdog Load Register                    | OxFFFFFFF   |
| WDTVAL  | 0x008  | RO     | Watchdog Current Value Register           | OxFFFFFFF   |
| WDTRIS  | 0x00C  | RO     | Watchdog Raw Interrupt Status Register    | 0x0         |
| WDTMIS  | 0x010  | RO     | Watchdog Masked Interrupt Status Register | 0x0         |
| WDTICLR | 0x014  | WO     | Watchdog Clear Interrupt Register         | -           |
| WDTLOCK | 0x500  | R/W    | Watchdog Lock Register                    | 0x0000000   |

Table 2.4.3 Register Overview: Watchdog Timer



## 2.4.3.1 Watchdog Control Register (WDTCON)

| Bit  | Symbol | Description                                                 | Reset |
|------|--------|-------------------------------------------------------------|-------|
|      |        |                                                             | value |
| 31:4 | -      | Reserved, should not write value to the none defined bits   | -     |
| 3:2  | WDTPRE | Watchdog Timer Pre-scale                                    | 0     |
|      |        | 0x0: Clock is divided by 1                                  |       |
|      |        | 0x1: Clock is divided by 16                                 |       |
|      |        | 0x2: Clock is divided by 256                                |       |
|      |        | 0x3: Reserved                                               |       |
| 1    | WDTRST | Enable Watchdog reset output                                | 0     |
|      |        | 0: Disable the reset                                        |       |
|      |        | 1: Enable the reset                                         |       |
| 0    | WDTIEN | Enable the interrupt. Reloads the counter from the value in | 0     |
|      |        | WDTLOAD when the interrupt is enabled, and was previously   |       |
|      |        | disabled.                                                   |       |
|      |        | 0: Disable the counter and interrupt                        |       |
|      |        | 1: Enable the counter and the interrupt                     |       |

Table 2.4.3.1 Watchdog Control Register (WDTCON)

## 2.4.3.2 Watchdog Load Register (WDTLOAD)

| Bit  | Symbol  | Description                                                    | Reset<br>value |
|------|---------|----------------------------------------------------------------|----------------|
| 31:0 | WDTLOAD | The WDTLOAD Register is a 32-bit register containing the value | OxFFFFFFFF     |
|      |         | from which the counter is to decrement. When this register is  |                |
|      |         | written to, the count is immediately restarted from the new    |                |
|      |         | value. The minimum valid value for WDTLOAD is 1                |                |

Table 2.4.3.2 Watchdog Load Register (WDTLOAD)

#### 2.4.3.3 Watchdog Current Value Register (WDTVAL)

|        |     | value                                                                        |
|--------|-----|------------------------------------------------------------------------------|
| WDTVAL |     | OxFFFFFFF                                                                    |
| WDT    | VAL | VAL The WDTVAL Register gives the current value of the decrementing counter. |

Table 2.4.3.3 Watchdog Current Value Register (WDTVAL)



#### 2.4.3.4 Watchdog Raw Interrupt Status Register (WDTRIS)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:1 | -      | Reserved, should not write value to the none defined bits | -           |
| 0    | WDTRIS | Raw interrupt status from the counter                     | 0           |

Table 2.4.3.4 Watchdog Raw Interrupt Status Register (WDTRIS)

#### 2.4.3.5 Watchdog Masked Interrupt Status Register (WDTMIS)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:1 | -      | Reserved, should not write value to the none defined bits | -           |
| 0    | WDTMIS | 0: Enabled interrupt status from the counter              | 0           |
|      |        | 1: Disable interrupt status from the counter              |             |

Table 2.4.3.5 Watchdog Masked Interrupt Status Register (WDTMIS)

#### 2.4.3.6 Watchdog Clear Interrupt Register (WDTICLR)

| Bit  | Symbol  | Description                                                      | Reset<br>value |
|------|---------|------------------------------------------------------------------|----------------|
| 31:0 | WDTICLR | A write of any value to the WDTICLR Register clears the watchdog | -              |
|      |         | interrupt, and reloads the counter from the value in WDTLOAD.    |                |

Table 2.4.3.6 Watchdog Clear Interrupt Register (WDTICLR)

## 2.4.3.7 Watchdog Lock Register (WDTLOCK)

| Bit  | Symbol | Description                                                       | Reset<br>value |
|------|--------|-------------------------------------------------------------------|----------------|
| 31:1 | WDTKEY | Enable write access to all other registers by writing 0x2AD5334C. | 0x0000000      |
|      |        | Disable write access by writing any other value.                  |                |
| 0    | WDTREN | Register write enable.                                            | 0              |
|      |        | 0: Write access to all other registers is disabled                |                |
|      |        | 1: Write access to all other registers is enabled                 |                |

Table 2.4.3.7 Watchdog Lock Register (WDTLOCK)

Note: Unlock by write 0x55AA6699 to WDTLOCK register.



## 2.4.4 Timer (Timer0 Base address = 0x4680\_0000; Timer1 Base address = 0x4680\_0100)

HSMicro HS6207 have two programmable 32-bits or 16bits down counter timers, user can easily implement timer control for application. The below modes are available in operation.

Free running mode: The counter wraps after reaching its zero value, and continues to count down from maximum value. The free running mode is default mode.

Periodic timer mode: The counter generates an interrupt at a constant interval, reloading the original value after wrapping past zero.

One-shot timer mode: The counter generates an interrupt once. When the counter reaches 0, it halts until you reprogram it. User can achieve this by either clearing the one-shot count bit in control register, in other case the count proceeds according to the selection of free running or periodic mode or writing new value to the Load value register.

| Name         | Offset | Access | Description                            | Reset value |
|--------------|--------|--------|----------------------------------------|-------------|
| TIMERxCON    | 0x000  | R/W    | Timer Control Register                 | 0x20        |
| TIMERxLOAD   | 0x004  | R/W    | Timer Load Register                    | 0x0000000   |
| TIMERxVAL    | 0x008  | RO     | Timer Current Value Register           | OxFFFFFFF   |
| TIMERxRIS    | 0x00C  | RO     | Timer Raw Interrupt Status Register    | 0x0         |
| TIMERxMIS    | 0x010  | RO     | Timer Masked Interrupt Status Register | 0x0         |
| TIMERxICLR   | 0x014  | WO     | Timer Clear Interrupt Register         | -           |
| TIMERxBGLOAD | 0x018  | R/W    | Timer Background Load Register         | 0x0000000   |

Table 2.4.4 Register Overview: Timer

## 2.4.4.1 Timer Control Register (TIMERxCON)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | TMREN  | Timer Enable                                              | 0           |
|      |        | 0: Timer disabled                                         |             |
|      |        | 1: Timer enabled                                          |             |
| 6    | TMRMS  | Timer Mode Select                                         | 0           |
|      |        | 0: Timer is in free-running mode                          |             |
|      |        | 1: Timer is in periodic mode                              |             |
| 5    | TMRIE  | Interrupt Enable                                          | 1           |
|      |        | 0: Timer Interrupt disabled                               |             |
|      |        | 1: Timer Interrupt enabled                                |             |



| 4   | -      | Reserved                                  | - |
|-----|--------|-------------------------------------------|---|
|     |        |                                           |   |
| 3:2 | TMRPRE | Timer Prescale                            | 0 |
|     |        | 00: Clock is divided by 1                 |   |
|     |        | 01: Clock is divided by 16                |   |
| 1   | TMRSZ  | Selects 16/32 bit counter operation       | 0 |
|     |        | 0: 16-bit counter                         |   |
|     |        | 1: 32-bit counter                         |   |
| 0   | TMROS  | Selects one-shot or wrapping counter mode | 0 |
|     |        | 0: wrapping mode                          |   |
|     |        | 1: one-shot mode                          |   |

Table 2.4.4.1 Timer Control Register (TIMERxCON)

## 2.4.4.2 Timer Load Register (TIMERxLOAD)

| Bit  | Symbol   | Description                                                     | Reset value |
|------|----------|-----------------------------------------------------------------|-------------|
| 31:0 | TMRxLOAD | When this register is written to directly, the current count is | 0x00000000  |
|      |          | immediately reset to the new value at the next rising edge of   |             |
|      |          | TIMER CLK that is enabled by TIMER CLK enable.                  |             |
|      |          | The value in this register is also overwritten if the           |             |
|      |          | TMRXBGLOAD Register is written to, but the current count is     |             |
|      |          | not immediately affected.                                       |             |
|      |          | If values are written to both the TMRXLOAD and                  |             |
|      |          | TMRXBGLOAD Registers before an enabled rising edge on           |             |
|      |          | TIMER CLK, the following occurs:                                |             |
|      |          | 1. On the next enabled TIMER CLK edge, the value written to     |             |
|      |          | the TMRXLOAD value replaces the current count value.            |             |
|      |          | 2. Then, each time the counter reaches zero, the current        |             |
|      |          | count value is reset to the value written to TMRXBGLOAD.        |             |
|      |          | Reading from the TMRXLOAD Register at any time after the        |             |
|      |          | two writes have occurred retrieves the value written to         |             |
|      |          | TMRXBGLOAD. That is, the value read from TMRXLOAD is            |             |
|      |          | always the value that takes effect for Periodic mode after the  |             |
|      |          | next time the counter reaches zero.                             |             |

Table 2.4.4.2 Timer Load Register (TIMERxLOAD)

Rev: v1.1



#### 2.4.4.3 Timer Current Value Register (TIMERxVAL)

| Bit  | Symbol  | Description                                                               | Reset<br>value |
|------|---------|---------------------------------------------------------------------------|----------------|
| 31:0 | TMRxVAL | The TMRXVAL Register gives the current value of the decrementing counter. | OxFFFFFFF      |

Table 2.4.4.3 Timer Current Value Register (TIMERxVAL)

#### 2.4.4.4 Timer Raw Interrupt Status Register (TIMERxRIS)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:1 | -       | Reserved, should not write value to the none defined bits | -           |
| 0    | TMRxRIS | Raw interrupt status from the counter                     | 0           |

Table 2.4.4.4 Timer Raw Interrupt Status Register (TIMERxRIS)

#### 2.4.4.5 Timer Masked Interrupt Status Register (TIMERxMIS)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:1 | -       | Reserved, should not write value to the none defined bits | -           |
| 0    | TMRxMIS | Enabled interrupt status from the counter                 | 0           |

Table 2.4.4.5 Timer Masked Interrupt Status Register (TIMERxMIS)

#### 2.4.4.6 Timer Clear Interrupt Register (TIMERxICLR)

| Bit  | Symbol   | Description                                                    | Reset<br>value |
|------|----------|----------------------------------------------------------------|----------------|
| 31:0 | TMRxICLR | Any write to the TMRXICLR Register clears the interrupt output | -              |
|      |          | from the counter.                                              |                |

Table 2.4.4.6 Timer Clear Interrupt Register (TIMERxICLR)



## 2.4.4.7 Timer Background Load Register (TIMERxBGLOAD)

| Bit  | Symbol     | Description                                                                                                                                                       | Reset value |
|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 31:0 | TMRxBGLOAD | The TMRXBGLOAD Register is 32-bits and contains the                                                                                                               | 0x00000000  |
|      |            | value from which the counter is to decrement. This is the                                                                                                         |             |
|      |            | value used to reload the counter when Periodic mode is                                                                                                            |             |
|      |            | enabled, and the current count reaches zero.                                                                                                                      |             |
|      |            | This register provides an alternative method of accessing                                                                                                         |             |
|      |            | the TMRXLOAD Register. The difference is that writes to                                                                                                           |             |
|      |            | TMRXBGLOAD do not cause the counter to immediately<br>restart from the new value.<br>Reading from this register returns the same value returned<br>from TMRXLOAD. |             |

Table 2.4.4.7 Timer Background Load Register (TIMERxBGLOAD)



#### 2.4.5 Capture/PWM (PWM Base address = 0x4280\_0000)

HSMicro HS6207 series provide four groups for capture function. The capture function input pin channel shared with PWM output channel, each channel support capture on rising/falling edge and count from rising edge to falling edge or count from falling edge to rising edge.

Pulse-width modulation is a digital technique for varying the amount of power delivered to an electronic device. By adjusting the amount of power delivered to a motor or LED, the motor speed and LED brightness can be controlled.

| Name     | Offset | Access | Description                                | Reset value |
|----------|--------|--------|--------------------------------------------|-------------|
| PWMCON0  | 0x000  | R/W    | PWM Group 0 Control Register.              | 0x00        |
| PWMLOAD0 | 0x004  | R/W    | PWM Group 0 Load Register.                 | 0x00000     |
| PWMD0A   | 0x008  | R/W    | PWM Group 0 Channel A Data Register.       | 0x00000     |
| PWMD0B   | 0x00C  | R/W    | PWM Group 0 Channel B Data Register.       | 0x00000     |
| PWMCON1  | 0x010  | R/W    | PWM Group 1 Control Register.              | 0x00        |
| PWMLOAD1 | 0x014  | R/W    | PWM Group 1 Load Register.                 | 0x00000     |
| PWMD1A   | 0x018  | R/W    | PWM Group 1 Channel A Data Register.       | 0x00000     |
| PWMD1B   | 0x01C  | R/W    | PWM Group 1 Channel B Data Register.       | 0x00000     |
| PWMCON2  | 0x020  | R/W    | PWM Group 2 Control Register.              | 0x00        |
| PWMLOAD2 | 0x024  | R/W    | PWM Group 2 Load Register.                 | 0x00000     |
| PWMD2A   | 0x028  | R/W    | PWM Group 2 Channel A Data Register.       | 0x00000     |
| PWMD2B   | 0x02C  | R/W    | PWM Group 2 Channel B Data Register.       | 0x00000     |
| PWMCON3  | 0x030  | R/W    | PWM Group 3 Control Register.              | 0x00        |
| PWMLOAD3 | 0x034  | R/W    | PWM Group 3 Load Register.                 | 0x00000     |
| PWMD3A   | 0x038  | R/W    | PWM Group 3 Channel A Data Register.       | 0x00000     |
| PWMD3B   | 0x03C  | R/W    | PWM Group 3 Channel B Data Register.       | 0x00000     |
| PWMIMSC  | 0x040  | R/W    | PWM Interrupt Mask Set and Clear Register. | 0x00        |
| PWMRIS   | 0x044  | RO     | PWM Raw Interrupt Status Register.         | 0x00        |
| PWMMIS   | 0x048  | RO     | PWM Masked Interrupt Status Register.      | 0x00        |
| PWMICLR  | 0x04C  | WO     | PWM Interrupt Clear Register.              | 0x00        |
| PWMRUN   | 0x050  | R/W    | PWM Run Register.                          | 0x0         |

Table 2.4.5 Register Overview: Capture/PWM



## 2.4.5.1 PWM Control Register (PWMCONx)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:7 | -      | Reserved, should not write value to the none defined bits | -           |
| 6    | PWMEN  | PWM Enable                                                | 0           |
|      |        | 0: Disable                                                |             |
|      |        | 1: Enable                                                 |             |
| 5:4  | PWMPS  | PWM Prescale Select                                       | 0x0         |
|      |        | 0x0: PCLK                                                 |             |
|      |        | 0x1: PCLK / 4                                             |             |
|      |        | 0x2: PCLK / 16                                            |             |
|      |        | 0x3: PCLK / 64                                            |             |
| 3    | PWMS   | PWM Select                                                | 0           |
|      |        | 0: Capture Mode                                           |             |
|      |        | 1: PWM Mode.                                              |             |
| 2    | CHS    | Capture Channel Select                                    | 0           |
|      |        | 0: Channel A                                              |             |
|      |        | 1: Channel B                                              |             |
| 1:0  | CMS    | Capture Mode Select                                       | 0x0         |
|      |        | 0x0: Capture on rising edge                               |             |
|      |        | 0x1: Capture on falling edge                              |             |
|      |        | 0x2: Count from rising edge to falling edge               |             |
|      |        | 0x3: Count from falling edge to rising edge               |             |

Table 2.4.5.1 PWM Control Register (PWMCONx)

## 2.4.5.2 PWM Load Register (PWMLOADx)

| Bit   | Symbol  | Description                                               | Reset value |
|-------|---------|-----------------------------------------------------------|-------------|
| 31:17 | -       | Reserved, should not write value to the none defined bits | -           |
| 16    | RELOAD  | PWM Reload Enable                                         | 0           |
|       |         | When RELOAD = '0', Reload Value = 0xFFFF                  |             |
|       |         | When RELOAD = '1', Reload Value = PWMLOAD                 |             |
| 15:0  | PWMLOAD | PWM Load Value                                            | 0x0000      |

Table 2.4.5.2 PWM Load Register (PWMLOADx)

## 2.4.5.3 PWM Data Register (PWMDxA/PWMDxB)

| Bit   | Symbol | Description                                               | Reset value |
|-------|--------|-----------------------------------------------------------|-------------|
| 31:17 | -      | Reserved, should not write value to the none defined bits | -           |
|       |        |                                                           |             |



| 16   | PWMOP   | PWM Output Polarity Select.<br>When PWMOP = '0', PWM leading low output.<br>When PWMOP = '1', PWM leading high output. | 0      |
|------|---------|------------------------------------------------------------------------------------------------------------------------|--------|
| 15:0 | PWMDATA | PWM Data                                                                                                               | 0x0000 |

Table 2.4.5.3 PWM Data Register (PWMDxA/PWMDxB)

#### 2.4.5.4 PWM Interrupt Mask Set and Clear Register (PWMIMSC)

| Bit  | Symbol   | Description                                               | Reset |
|------|----------|-----------------------------------------------------------|-------|
|      |          |                                                           | value |
| 31:8 | -        | Reserved, should not write value to the none defined bits | -     |
| 7    | PWMIMSC7 | PWM Group 3 Overflow Interrupt Mask Set and Clear.        | 0     |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 6    | PWMIMSC6 | PWM Group 2 Overflow Interrupt Mask Set and Clear.        | 0     |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 5    | PWMIMSC5 | PWM Group 1 Overflow Interrupt Mask Set and Clear.        | 0     |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 4    | PWMIMSC4 | PWM Group 0 Overflow Interrupt Mask Set and Clear.        | 0     |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 3    | PWMIMSC3 | PWM Group 3 Compare/Capture Interrupt Mask Set and        | 0     |
|      |          | Clear.                                                    |       |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 2    | PWMIMSC2 | PWM Group 2 Compare/Capture Interrupt Mask Set and        | 0     |
|      |          | Clear.                                                    |       |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 1    | PWMIMSC1 | PWM Group 1 Compare/Capture Interrupt Mask Set and        | 0     |
|      |          | Clear.                                                    |       |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |
| 0    | PWMIMSC0 | PWM Group 0 Compare/Capture Interrupt Mask Set and        | 0     |
|      |          | Clear.                                                    |       |
|      |          | 0: Disable                                                |       |
|      |          | 1: Enable                                                 |       |

Table 2.4.5.4 PWM Interrupt Enable Register (PWMIMSC)



## 2.4.5.5 PWM Raw Interrupt Status Register (PWMRIS)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:8 | -       | Reserved, should not write value to the none defined bits | -           |
| 7    | PWMRIS7 | PWM Group 3 Raw Overflow Interrupt Status                 | 0           |
| 6    | PWMRIS6 | PWM Group 2 Raw Overflow Interrupt Status                 | 0           |
| 5    | PWMRIS5 | PWM Group 1 Raw Overflow Interrupt Status                 | 0           |
| 4    | PWMRIS4 | PWM Group 0 Raw Overflow Interrupt Status                 | 0           |
| 3    | PWMRIS3 | PWM Group 3 Raw Compare/Capture Interrupt Status          | 0           |
| 2    | PWMRIS2 | PWM Group 2 Raw Compare/Capture Interrupt Status          | 0           |
| 1    | PWMRIS1 | PWM Group 1 Raw Compare/Capture Interrupt Status          | 0           |
| 0    | PWMRIS0 | PWM Group 0 Raw Compare/Capture Interrupt Status          | 0           |

Table 2.4.5.5 PWM Raw Interrupt Status Register (PWMRIS)

#### 2.4.5.6 PWM Masked Interrupt Status Register (PWMMIS)

| Bit  | Symbol         | Description                                               | Reset value |
|------|----------------|-----------------------------------------------------------|-------------|
| 31:8 | -              | Reserved, should not write value to the none defined bits | -           |
| 7    | PWMMIS7        | PWM Group 3 Masked Overflow Interrupt Status              | 0           |
| 6    | PWMMIS6        | PWM Group 2 Masked Overflow Interrupt Status              | 0           |
| 5    | PWMMIS5        | PWM Group 1 Masked Overflow Interrupt Status              | 0           |
| 4    | PWMMIS4        | PWM Group 0 Masked Overflow Interrupt Status              | 0           |
| 3    | PWMMIS3        | PWM Group 3 Masked Compare/Capture Interrupt Status       | 0           |
| 2    | PWMMIS2        | PWM Group 2 Masked Compare/Capture Interrupt Status       | 0           |
| 1    | PWMMIS1        | PWM Group 1 Masked Compare/Capture Interrupt Status       | 0           |
| 0    | <b>PWMMIS0</b> | PWM Group 0 Masked Compare/Capture Interrupt Status       | 0           |

Table 2.4.5.6 PWM Masked Interrupt Status Register (PWMMIS)

#### 2.4.5.7 PWM Interrupt Clear Register (PWMICLR)

| Bit  | Symbol   | Description                                                   | Reset |
|------|----------|---------------------------------------------------------------|-------|
|      |          |                                                               | value |
| 31:8 | -        | Reserved, should not write value to the none defined bits     | -     |
| 7    | PWMICLR3 | Writing "1" to this bit clears PWM Group 3 Overflow Interrupt | 0     |
|      |          | Status                                                        |       |
| 6    | PWMICLR2 | Writing "1" to this bit clears PWM Group 2 Overflow Interrupt | 0     |
|      |          | Status                                                        |       |



| 5 | PWMICLR1 | Writing "1" to this bit clears PWM Group 1 Overflow Interrupt<br>Status        | 0 |
|---|----------|--------------------------------------------------------------------------------|---|
| 4 | PWMICLR0 | Writing "1" to this bit clears PWM Group 0 Overflow Interrupt<br>Status        | 0 |
| 3 | PWMICLR3 | Writing "1" to this bit clears PWM Group 3 Compare/Capture<br>Interrupt Status | 0 |
| 2 | PWMICLR2 | Writing "1" to this bit clears PWM Group 2 Compare/Capture<br>Interrupt Status | 0 |
| 1 | PWMICLR1 | Writing "1" to this bit clears PWM Group 1 Compare/Capture<br>Interrupt Status | 0 |
| 0 | PWMICLR0 | Writing "1" to this bit clears PWM Group 0 Compare/Capture<br>Interrupt Status | 0 |

Table 2.4.5.7 PWM Interrupt Clear Register (PWMICLR)

#### 2.4.5.8 PWM Run Register (PWMRUN)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:4 | -       | Reserved, should not write value to the none defined bits | -           |
| 3    | PWMRUN3 | PWM Group 3 Run.                                          | 0           |
|      |         | 0: Stop                                                   |             |
|      |         | 1: Run                                                    |             |
| 2    | PWMRUN2 | PWM Group 2 Run.                                          | 0           |
|      |         | 0: Stop                                                   |             |
|      |         | 1: Run                                                    |             |
| 1    | PWMRUN1 | PWM Group 1 Run.                                          | 0           |
|      |         | 0: Stop                                                   |             |
|      |         | 1: Run                                                    |             |
| 0    | PWMRUN0 | PWM Group 0 Run.                                          | 0           |
|      |         | 0: Stop                                                   |             |
|      |         | 1: Run                                                    |             |

Table 2.4.5.8 PWM Run Register (PWMRUN)



#### 2.4.6 Universal Asynchronous Receiver/Transmitter (UART) with modem control (UART0 Base address = 0x4480\_0000; UART1 Base address = 0x4500\_0000; UART2 Base address = 0x4580\_0000)

HSMicro HS6207 series provides three set universal asynchronous receiver/transmitter (UART). UART performs normal speed UART and support flow control function.

The UART baud rate is calculated as: Baud Rate = PCLK / (16 x DLR)

| Name       | Offset | Access | Description                                                          | Reset  |
|------------|--------|--------|----------------------------------------------------------------------|--------|
|            |        |        |                                                                      | value  |
| UARTxRBR   | 0x000  | RO     | Receiver Buffer Register. Contains the next received character to    | -      |
|            |        |        | be read.                                                             |        |
| UARTxTHR   | 0x004  | WO     | Transmit Holding Register. The next character to be transmitted      | -      |
|            |        |        | is written here.                                                     |        |
| UARTxDLR   | 0x008  | R/W    | Divisor Latch Register. The full divisor is used to generate a baud  | 0x0001 |
|            |        |        | rate from the fractional rate divider.                               |        |
| UARTxIER   | 0x00C  | R/W    | Interrupt Enable Register. Contains individual interrupt enable      | 0x00   |
|            |        |        | bits for the 7 potential UART interrupts.                            |        |
| UARTxIIR   | 0x010  | RO     | Interrupt Identification Register. Identifies which interrupt(s) are | 0x01   |
|            |        |        | pending.                                                             |        |
| UARTxFCR   | 0x014  | WO     | FIFO Control Register. Controls UART FIFO usage and modes.           | 0x00   |
| UARTxLCR   | 0x018  | R/W    | Line Control Register. Contains controls for frame formatting and    | 0x00   |
|            |        |        | break generation.                                                    |        |
| UARTxMCR   | 0x01C  | R/W    | Modem control register                                               | 0x00   |
| UARTxLSR   | 0x020  | RO     | Line Status Register. Contains flags for transmit and receive        | 0x60   |
|            |        |        | status, including line errors.                                       |        |
| UARTxMSR   | 0x024  | RO     | Modem status register                                                | 0x00   |
| UARTxSCR   | 0x028  | R/W    | Scratch Pad Register. Eight-bit temporary storage for software.      | 0x00   |
| UARTxEFR   | 0x02C  | R/W    | Enhanced Features Register                                           | 0x00   |
| UARTxXON1  | 0x030  | R/W    | XON1 Register                                                        | 0x00   |
| UARTxXON2  | 0x034  | R/W    | XON2 Register                                                        | 0x00   |
| UARTxXOFF1 | 0x038  | R/W    | XOFF1 Register                                                       | 0x00   |
| UARTxXOFF2 | 0x03C  | R/W    | XOFF2 Register                                                       | 0x00   |

Table 2.4.6 Register Overview: Universal Asynchronous Receiver/Transmitter (UART)

Rev: v1.1



## 2.4.6.1 UART Receiver Buffer Register (UARTxRBR)

| Bit  | Symbol | Description                                                                              | Reset<br>value |
|------|--------|------------------------------------------------------------------------------------------|----------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits                                | -              |
| 7:0  | RBR    | The UART Receiver Buffer Register contains the oldest received byte in the UART RX FIFO. | -              |

Table 2.4.6.1 UART Receiver Buffer Register (UARTxRBR)

## 2.4.6.2 UART Transmitter Holding Register (UARTxTHR)

| Bit  | Symbol | Description                                                         | Reset<br>value |
|------|--------|---------------------------------------------------------------------|----------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits           | -              |
| 7:0  | THR    | Writing to the UART Transmit Holding Register causes the data to be | -              |
|      |        | stored in the UART transmit FIFO. The byte will be sent when it     |                |
|      |        | reaches the bottom of the FIFO and the transmitter is available.    |                |

Table 2.4.6.2 UART Transmitter Holding Register (UARTxTHR)

## 2.4.6.3 UART Divisor Latch Register (UARTxDLR)

| Bit   | Symbol | Description                                                         | Reset  |
|-------|--------|---------------------------------------------------------------------|--------|
|       |        |                                                                     | value  |
| 31:16 | -      | Reserved, should not write value to the none defined bits           | -      |
| 15:0  | DLR    | Divisor Latch Register. The full divisor is used to generate a baud | 0x0001 |
|       |        | rate from the fractional rate divider.                              |        |
|       |        | Baud rate = PCLK / 16×DLR                                           |        |

Table 2.4.6.3 UART Divisor Latch Register (UARTxDLR)

#### 2.4.6.4 UART Interrupt Enable Register (UARTxIER)

| Bit     | Symbol | Description                                               | Reset<br>value |
|---------|--------|-----------------------------------------------------------|----------------|
| 31<br>8 | -      | Reserved, should not write value to the none defined bits | -              |



| 7 | CTSIE  | CTS Interrupt Enable, Enable a rising edge is detected on the CTS                     | 0 |
|---|--------|---------------------------------------------------------------------------------------|---|
| / | CISIE  | CTS Interrupt Enable. Enable a rising edge is detected on the CTS modem control line. | 0 |
|   |        |                                                                                       |   |
|   |        | 0: Disable the CTS interrupt.                                                         |   |
| 6 | DTCLE  | 1: Enable the CTS interrupt.                                                          | 0 |
| 6 | RTSIE  | RTS Interrupt Enable. Enable a rising edge is detected on the RTS                     | 0 |
|   |        | modem control line.                                                                   |   |
|   |        | 0: Disable the RTS interrupt.                                                         |   |
|   |        | 1: Enable the RTS interrupt.                                                          |   |
| 5 | XOFIE  | XOFF Interrupt Enable. Enable an XOFF character is received.                          | 0 |
|   |        | 0: Disable the XOF interrupt.                                                         |   |
|   |        | 1: Enable the XOF interrupt.                                                          |   |
|   |        |                                                                                       |   |
| 4 | -      | Reserved, should not write value to the none defined bits                             | - |
|   |        |                                                                                       |   |
|   |        |                                                                                       |   |
|   |        |                                                                                       |   |
| 3 | MDSIE  | Modem Status Interrupt Enable.                                                        | 0 |
|   |        | 0: Disable the modem status interrupts.                                               |   |
|   |        | 1: Enable the modem status interrupts.                                                |   |
|   |        |                                                                                       |   |
| 2 | RLSIE  | RX Line Status Interrupt Enable. Enables the UART RX line status                      | 0 |
|   |        | interrupts. The status of this interrupt can be read from LSR[4:1].                   |   |
|   |        | 0: Disable the RX line status interrupts.                                             |   |
|   |        | 1: Enable the RX line status interrupts.                                              |   |
| 1 | THREIE | TX Holding Register Empty Interrupt Enable. Enables the THREIE                        | 0 |
|   |        | interrupt for UART. The status of this interrupt can be read from                     |   |
|   |        | LSR[5].                                                                               |   |
|   |        | 0: Disable the THREIE interrupts.                                                     |   |
| 0 | RBRIE  | RX Buffer Register Interrupt Enable. Enables the Receive Data                         | 0 |
|   |        | Available interrupt for UART. It also controls the Character Receive                  |   |
|   |        | Time-out interrupt.                                                                   |   |
|   |        | 0: Disable the RBRIE interrupts.                                                      |   |
| L |        |                                                                                       |   |

Table 2.4.6.4 UART Interrupt Enable Register (UARTxIER)

## 2.4.6.5 UART Interrupt Identification Register (UARTxIIR)

| Bit  | Symbol | Description                                               | Reset<br>value |
|------|--------|-----------------------------------------------------------|----------------|
| 31:6 | -      | Reserved, should not write value to the none defined bits | -              |



| 5   | INTHFC | Hardware Flow Control (CTS or RTS rising edge)                          | 0 |
|-----|--------|-------------------------------------------------------------------------|---|
|     |        | If Set ("1") indicating that an XOFF character has been received. It is |   |
|     |        | cleared by reading the Interrupt Identification Register.               |   |
| 4   | INTSFC | Software Flow Control (XOFF character received)                         | 0 |
|     |        | If Set ("1") indicating that a rising edge has been detected on either  |   |
|     |        | the RTS/CTS Modem Control line. It is cleared by reading the            |   |
|     |        | Interrupt Identification Register.                                      |   |
| 3:1 | INTID  | Interrupt identification.                                               | 0 |
|     |        | 0x3: 1 - Receive Line Status.                                           |   |
|     |        | 0x2: 2a - Receive Data Available.                                       |   |
|     |        | 0x6: 2b - Receive FIFO Character Time-out Indicator.                    |   |
|     |        | 0x1: 3 - TX Holding Register Empty.                                     |   |
|     |        | 0x0: 4 - Modem Status change.                                           |   |
| 0   | INT    | Interrupt status. Note that IIR[0] is active low. The pending interrupt | 1 |
|     | STATUS | can be determined by evaluating IIR[3:1].                               |   |
|     |        | 0: At least one interrupt is pending.                                   |   |
|     |        | 1: No interrupt is pending.                                             |   |

Table 2.4.6.5 UART Interrupt Identification Register (UARTxIIR)

## 2.4.6.6 UART FIFO Control Register (UARTxFCR)

| Bit  | Symbol   | Description                                                       | Reset |
|------|----------|-------------------------------------------------------------------|-------|
|      |          |                                                                   | value |
| 31:8 | -        | Reserved, should not write value to the none defined bits         | -     |
| 7:6  | RXTL     | RX Trigger Level. These two bits determine how many receiver UART | 0     |
|      |          | FIFO characters must be written before an interrupt is activated. |       |
|      |          | 0x0: Trigger level 0 (1 character).                               |       |
|      |          | 0x1: Trigger level 1 (4 characters).                              |       |
|      |          | 0x2: Trigger level 2 (8 characters).                              |       |
|      |          | 0x3: Trigger level 3 (14 characters).                             |       |
| 5:4  | TXTL     | TX Trigger Level. These two bits determine how many transmit UART | 0     |
|      |          | FIFO characters must be written before an interrupt is activated. |       |
|      |          | 0x0: Trigger level 0 (1 character).                               |       |
|      |          | 0x1: Trigger level 1 (4 characters).                              |       |
|      |          | 0x2: Trigger level 2 (8 characters).                              |       |
|      |          | 0x3: Trigger level 3 (14 characters).                             |       |
| 3    | Reserved | Reserved, should not write value to the none defined bits         | -     |



| 2 | TXFIFO | TX FIFO Reset                                                        | 0 |
|---|--------|----------------------------------------------------------------------|---|
|   | RST    | 0: No impact on either of UART FIFOs.                                |   |
|   |        | 1: Writing a logic 1 to FCR[2] will clear all bytes in UART TX FIFO, |   |
|   |        | reset the pointer logic. This bit is self-clearing.                  |   |
| 1 | RXFIFO | RX FIFO Reset                                                        | 0 |
|   | RST    | 0: No impact on either of UART FIFOs.                                |   |
|   |        | 1: Writing a logic 1 to FCR[1] will clear all bytes in UART RX FIFO, |   |
|   |        | reset the pointer logic. This bit is self-clearing.                  |   |
| 0 | FIFOEN | FIFO Enable                                                          | 0 |
|   |        | 0: UART FIFOs are disabled. Must not be used in the application.     |   |
|   |        | 1: Active high enable for both UART RX and TX FIFOs and FCR[7:1]     |   |
|   |        | access. This bit must be set for proper UART operation. Any          |   |
|   |        | transition on this bit will automatically clear the UART FIFOs.      |   |

Table 2.4.6.6 UART FIFO Control Register (UARTxFCR)



## 2.4.6.7 UART Line Control Register (UARTxLCR)

| Bit  | Symbol | Description                                                          | Reset |
|------|--------|----------------------------------------------------------------------|-------|
|      |        |                                                                      | value |
| 31:7 | -      | Reserved, should not write value to the none defined bits            | -     |
| 6    | BCON   | Break Control                                                        | 0     |
|      |        | 0: Disable break transmission.                                       |       |
|      |        | 1: Enable break transmission. Output pin UART TXD is forced to logic |       |
|      |        | 0 when LCR[6] is active high.                                        |       |
| 5:4  | PSEL   | Parity Select                                                        | 0     |
|      |        | 0x0: Odd parity. Number of 1s in the transmitted character and the   |       |
|      |        | attached parity bit will be odd.                                     |       |
|      |        | 0x1: Even Parity. Number of 1s in the transmitted character and the  |       |
|      |        | attached parity bit will be even.                                    |       |
|      |        | 0x2: Forced 1 stick parity.                                          |       |
|      |        | 0x3: Forced 0 stick parity.                                          |       |
| 3    | PEN    | Parity Enable                                                        | 0     |
|      |        | 0: Disable parity generation and checking.                           |       |
|      |        | 1: Enable parity generation and checking.                            |       |
| 2    | SBS    | Stop Bit Select                                                      | 0     |
|      |        | 0: 1 stop bit.                                                       |       |
|      |        | 1: 2 stop bits (1.5 if LCR[1:0]=00).                                 |       |
| 1:0  | WLS    | Word Length Select                                                   | 0     |
|      |        | 0x0: 5-bit character length.                                         |       |
|      |        | 0x1: 6-bit character length.                                         |       |
|      |        | 0x2: 7-bit character length.                                         |       |
|      |        | 0x3: 8-bit character length.                                         |       |

Table 2.4.6.7 UART Line Control Register (UARTxLCR)

## 2.4.6.8 UART Modem Control Register (UARTxMCR)

| Bit  | Symbol | Description                                                         | Reset |
|------|--------|---------------------------------------------------------------------|-------|
|      |        |                                                                     | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits           | -     |
| 7    | XOFFS  | XOFF Status                                                         | 0     |
|      |        | This read-only bit is set to "1" when an XOFF character is received |       |
|      |        | and cleared when an XON character is received.                      |       |



| 6   | IREN | IrDA mode enables                                               | 0 |
|-----|------|-----------------------------------------------------------------|---|
|     |      | 0: IrDA mode on UART is disabled,                               |   |
|     |      | 1: IrDA mode on UART is enabled.                                |   |
| 5   | -    | Reserved, should not write value to the none defined bits       | - |
|     |      |                                                                 |   |
|     |      |                                                                 |   |
| 4   | MLBM | Modem Loop back mode                                            | 0 |
|     |      | 0: Disable modem loopback mode.                                 |   |
|     |      | 1: Enable modem loopback mode.                                  |   |
| 3:2 | -    | Reserved, should not write value to the none defined bits       | - |
|     |      |                                                                 |   |
|     |      |                                                                 |   |
| 1   | RTS  | Source for modem output pin RTS. This bit reads as 0 when modem | 0 |
|     |      | loopback mode is active.                                        |   |
|     |      | 0: Drive RTS pin high.                                          |   |

Table 2.4.6.8 UART Modem Control Register (UARTxMCR)

## 2.4.6.9 UART Line Status Register (UARTxLSR)

| Bit  | Symbol | Description                                                              | Reset |
|------|--------|--------------------------------------------------------------------------|-------|
|      |        |                                                                          | value |
| 31:8 | -      | Reserved.                                                                | -     |
| 7    | RXFE   | Error in RX FIFO. LSR[7] is set when a character with a RX error such as | 0     |
|      |        | framing error, parity error or break interrupt, is loaded into the RBR.  |       |
|      |        | This bit is cleared when the LSR register is read and there are no       |       |
|      |        | subsequent errors in the UART FIFO.                                      |       |
|      |        | 0: RBR contains no UART RX errors or FCR[0]=0.                           |       |
|      |        | 1: UART RBR contains at least one UART RX error.                         |       |
| 6    | TEMT   | Transmitter Empty. TEMT is set when both THR and TSR are empty;          | 0     |
|      |        | TEMT is cleared when either the TSR or the THR contain valid data.       |       |
|      |        | 0: THR and/or the TSR contains valid data.                               |       |
|      |        | 1: THR and the TSR are empty.                                            |       |
| 5    | THRE   | Transmitter Holding Register Empty. THRE is set immediately upon         | 0     |
|      |        | detection of an empty UART THR and is cleared on a THR write.            |       |
|      |        | 0: THR contains valid data.                                              |       |
|      |        | 1: THR is empty.                                                         |       |



| 4        | BI | Break Interrupt. When RXD1 is held in the spacing state (all zeros) for   | 0 |
|----------|----|---------------------------------------------------------------------------|---|
|          |    | one full character transmission (start, data, parity, stop), a break      |   |
|          |    | interrupt occurs. Once the break condition has been detected, the         |   |
|          |    | receiver goes idle until RXD1 goes to marking state (all ones). A LSR     |   |
|          |    | read clears this status bit. The time of break detection is dependent on  |   |
|          |    | FCR[0]. Note: The break interrupt is associated with the character at     |   |
|          |    | the top of the UART RBR FIFO.                                             |   |
|          |    | 0: Break interrupt status is inactive.                                    |   |
|          |    | 1: Break interrupt status is active.                                      |   |
| 3        | FE | Framing Error. When the stop bit of a received character is a logic 0, a  | 0 |
|          |    | framing error occurs. A LSR read clears LSR[3]. The time of the framing   |   |
|          |    | error detection is dependent on FCR0. Upon detection of a framing         |   |
|          |    | error, the RX will attempt to re-synchronize to the data and assume       |   |
|          |    | that the bad stop bit is actually an early start bit. However, it cannot  |   |
|          |    | be assumed that the next received byte will be correct even if there is   |   |
|          |    | no Framing Error.                                                         |   |
|          |    | Note: A framing error is associated with the character at the top of the  |   |
|          |    | UART RBR FIFO.                                                            |   |
| 2        | PE | Parity Error. When the parity bit of a received character is in the wrong | 0 |
|          |    | state, a parity error occurs. A LSR read clears LSR[2]. Time of parity    |   |
|          |    | error detection is dependent on FCR[0].                                   |   |
|          |    | Note: A parity error is associated with the character at the top of the   |   |
|          |    | UART RBR FIFO.                                                            |   |
|          |    | 0: Parity error status is inactive.                                       |   |
|          |    | 1: Parity error status is active.                                         |   |
|          |    |                                                                           |   |
|          |    |                                                                           |   |
| 1        | OE | Overrun Error. The overrun error condition is set as soon as it occurs. A | 0 |
|          |    | LSR read clears LSR[1]. LSR[1] is set when UART RSR has a new             |   |
|          |    | character assembled and the UART RBR FIFO is full. In this case, the      |   |
|          |    | UART RBR FIFO will not be overwritten and the character in the UART       |   |
|          |    | RSR will be lost.                                                         |   |
|          |    | 0: Overrun error status is inactive.                                      |   |
|          |    | 1: Overrun error status is active.                                        |   |
|          |    |                                                                           |   |
|          |    |                                                                           |   |
| <u> </u> | 1  | I                                                                         |   |



| 0 | RDR | Receiver Data Ready: LSR[0] is set when the RBR holds an unread | 0 |
|---|-----|-----------------------------------------------------------------|---|
|   |     | character and is cleared when the UART RBR FIFO is empty.       |   |
|   |     | 0: RDR is empty.                                                |   |
|   |     | 1: RDR contains valid data.                                     |   |
|   |     |                                                                 |   |
|   |     |                                                                 |   |
|   |     |                                                                 |   |
|   |     |                                                                 |   |
|   |     |                                                                 |   |

Table 2.4.6.9 UART Line Status Register (UARTxLSR)

## 2.4.6.10 UART Modem Status Register (UARTxMSR)

| Bit  | Symbol | Description                                                      |       |
|------|--------|------------------------------------------------------------------|-------|
|      |        |                                                                  | value |
| 31:5 | -      | Reserved, should not write value to the none defined bits        | -     |
| 4    | CTS    | Clear To Send State. Complement of input signal CTS. This bit is | 0     |
|      |        | connected to MCR[1] in modem loopback mode.                      |       |
| 3:1  | -      | Reserved, should not write value to the none defined bits        | -     |
| 0    | DCTS   | Delta CTS. Set upon state change of input CTS. Cleared on an MSR | 0     |

Table 2.4.6.10 UART Modem Status Register (UARTxMSR)

#### 2.4.6.11 UART Scratch Pad Register (UARTxSCR)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7:0  | PAD    | A readable, writable byte.                                | 0x00        |

Table 2.4.6.11 UART Scratch Pad Register (UARTxSCR)

#### 2.4.6.12 UART Enhanced Features Register (UARTxEFR)

| Bit  | Symbol  | Description                                                      | Reset |
|------|---------|------------------------------------------------------------------|-------|
|      |         |                                                                  | value |
| 31:8 | -       | Reserved, should not write value to the none defined bits        | -     |
| 7    | AUTOCTS | Enables hardware transmission flow control                       | 0     |
| 6    | AUTORTS | Enables hardware reception flow control (RTS=0, RTS pin is high) | 0     |
| 5    | -       | Reserved.                                                        | -     |



| 4   | MEEN   | M16x50 Enhancements Enables                                 | 0   |
|-----|--------|-------------------------------------------------------------|-----|
| 3:2 | TXSWFC | TX Software Flow Control                                    | 0x0 |
|     |        | 0x0: No TX Flow Control                                     |     |
|     |        | 0x1: Transmit XON1/XOFF1 as flow control bytes              |     |
|     |        | 0x2: Transmit XON2/XOFF2 as flow control bytes              |     |
|     |        | 0x3: Transmit XON1 & XON2 and XOFF1 & XOFF2 as flow control |     |
|     |        | words                                                       |     |
| 1:0 | RXSWFC | RX Software Flow Control                                    | 0x0 |
|     |        | 0x0: No RX Flow Control                                     |     |
|     |        | 0x1: Receive XON1/XOFF1 as flow control bytes               |     |
|     |        | 0x2: Receive XON2/XOFF2 as flow control bytes               |     |
|     |        | 0x3: Receive XON1 & XON2 and XOFF1 & XOFF2 as flow control  |     |
|     |        | words                                                       |     |

Table 2.4.6.12 UART Enhanced Features Register (UARTxEFR)

## 2.4.6.13 UART XON1, XON2 Registers (UARTxXON1/UARTxXON2)

| Bit  | Symbol | Description                                                                    | Reset |
|------|--------|--------------------------------------------------------------------------------|-------|
|      |        |                                                                                | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits                      | -     |
| 7:0  | HXON   | hold the XON characters used in software control of transmission and reception | 0x00  |

Table 2.4.6.13 UART XON1, XON2 Registers (UARTxXON1/UARTxXON2)

#### 2.4.6.14 UART XOFF1, XOFF2 Registers (UARTxXOFF1/UARTxXOFF2/UART1XOFF1)

| Bit  | Symbol | Description                                                                     | Reset<br>value |
|------|--------|---------------------------------------------------------------------------------|----------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits                       | -              |
| 7:0  | HXOFF  | hold the XOFF characters used in software control of transmission and reception | 0x00           |

Table 2.4.6.14 UART XOFF1, XOFF2 Registers (UARTxXOFF1/UARTxXOFF2/UART1XOFF1)



## 2.4.7 Inter-Integrated Circuit (I<sup>2</sup>C) Controller (I2C0 Base address = 0x4800\_0000)

The I<sup>2</sup>C controller support operation in master and slave mode. In master mode, it performs arbitration to allow it to operate in multi-master systems. In salve mode, it can interrupt the processor when it recognizes its own 7-bit or 10-bit address or the general call address. The I<sup>2</sup>C interface is byte oriented and has four operation modes: master transmitter mode, master receiver mode, slave transmitter mode and slave receiver mode. Data transfer from a master transmitter to a slave device. The first byte transmitted by the master is the slave address, next follows byte of data. The salve returns an ACK bit after each received byte. Data transfer from a slave transmitter to a master device. The slave address byte is transmitted by the master and slave returns an ACK bit, next follows the data bytes transmitted by the salve to master. The master returns an ACK bit after all received bytes other than the last byte. The end of the last byte, a not ACK is returned. The master device generates all of the serial clock pulses and the START and STOP condition. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning if the next series transfer, the I<sup>2</sup>C bus will not be released.

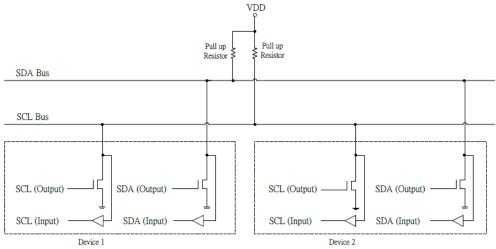



Figure 2.4.7 I<sup>2</sup>C-Bus Configuration

| Name       | Offset | Access | Description                                              | Reset value |
|------------|--------|--------|----------------------------------------------------------|-------------|
| I2CxCONSET | 0x000  | R/W    | I <sup>2</sup> C Control Set Register                    | 0x000       |
| I2CxCONCLR | 0x004  | WO     | I <sup>2</sup> C Control Clear Register                  | 0x00        |
| I2CxSTAT   | 0x008  | RO     | I <sup>2</sup> C Status Register                         | 0xF8        |
| I2CxDAT    | 0x00C  | R/W    | I <sup>2</sup> C Data Register                           | 0x00        |
| I2CxCLK    | 0x010  | R/W    | I <sup>2</sup> C Clock Control Register                  | 0x00        |
| I2CxADR0   | 0x014  | R/W    | I <sup>2</sup> C Slave Address Register 0.               | 0x00        |
| I2CxADM0   | 0x018  | R/W    | I <sup>2</sup> C Slave Address Mask Register 0.          | OxFE        |
| I2CxXADR0  | 0x01C  | R/W    | I <sup>2</sup> C Extended Slave Address Register 0.      | 0x000       |
| I2CxXADM0  | 0x020  | R/W    | I <sup>2</sup> C Extended Slave Address Mask Register 0. | 0x1FE       |
| I2CxRST    | 0x024  | WO     | I <sup>2</sup> C Software Reset Register                 | 0x00        |
| I2CxADR1   | 0x028  | R/W    | I <sup>2</sup> C Slave Address Register 1.               | 0x00        |
| I2CxADM1   | 0x02C  | R/W    | I <sup>2</sup> C Slave Address Mask Register 1.          | OxFE        |



| I2CxADR2 | 0x030 | R/W | I <sup>2</sup> C Slave Address Register 2.      | 0x00 |
|----------|-------|-----|-------------------------------------------------|------|
| I2CxADM2 | 0x034 | R/W | I <sup>2</sup> C Slave Address Mask Register 2. | 0xFE |
| I2CxADR3 | 0x038 | R/W | I <sup>2</sup> C Slave Address Register 3.      | 0x00 |
| I2CxADM3 | 0x03C | R/W | I <sup>2</sup> C Slave Address Mask Register 3. | 0xFE |

Table 2.4.7 Register Overview: Inter-Integrated Circuit (I<sup>2</sup>C)

## 2.4.7.1 I<sup>2</sup>C Control Set Register (I2CxCONSET)

The CONSET register is controls setting of bits in the register that control operation of the  $I^2C$  interface. There are Bit0 and Bit1 read-only register to read extended salve and salve address FLAG.

| Bit  | Symbol | Description                                                                              |   |  |  |
|------|--------|------------------------------------------------------------------------------------------|---|--|--|
| 31:9 | -      | Reserved, should not write value to the none defined bits                                | - |  |  |
| 8    | GCF    | I <sup>2</sup> C General Call FLAG (Read Only)                                           | 0 |  |  |
|      |        | 0: I <sup>2</sup> C General call address is not match.                                   |   |  |  |
|      |        | 1: I <sup>2</sup> C General call address is match. This bit is clear when new data is    |   |  |  |
|      |        | transmit/receive.                                                                        |   |  |  |
| 7    | I2CIE  | Interrupt Enable                                                                         | 0 |  |  |
|      |        | 0: Disable I <sup>2</sup> C interrupt.                                                   |   |  |  |
|      |        | 1: Enable I <sup>2</sup> C interrupt.                                                    |   |  |  |
| 6    | I2CEN  | I <sup>2</sup> C interface enable. (I2CEN can be cleared by writing 1 to the I2CENC      | 0 |  |  |
|      |        | bit in the I2C0CONCLR register.)                                                         |   |  |  |
|      |        | (The Multi-Function pin function of SDA and SCL must be set to I <sup>2</sup> C          |   |  |  |
|      |        | function.)                                                                               |   |  |  |
|      |        | 0: Disable I <sup>2</sup> C interface.                                                   |   |  |  |
|      |        | 1: Enable I <sup>2</sup> C interface.                                                    |   |  |  |
| 5    | STA    | START flag. (STA can be cleared by writing 1 to the STAC bit in the                      | 0 |  |  |
|      |        | I2C0CONCLR register.)                                                                    |   |  |  |
|      |        | When STA is set to one, the I <sup>2</sup> C enters master mode and will send a          |   |  |  |
|      |        | START condition on the bus when the bus is free. If the STA bit is set to                |   |  |  |
|      |        | one when the I <sup>2</sup> C is already in master mode, then a repeated START           |   |  |  |
|      |        | condition will be sent. If the STA bit is set to one while the I <sup>2</sup> C is being |   |  |  |



|   |       | · · · · · · · · · · · · · · · · · · ·                                                           |   |
|---|-------|-------------------------------------------------------------------------------------------------|---|
|   |       | accessed in slave mode, the I <sup>2</sup> C will complete the data transfer in slave           |   |
|   |       | mode then enter master mode when the bus has been released.                                     |   |
|   |       | The STA bit is cleared automatically after a START condition has been                           |   |
|   |       | sent: writing a zero to this bit has no effect.                                                 |   |
| 4 | STO   | STOP flag.                                                                                      | 0 |
|   |       | If STO is set to one in master mode, a STOP condition is transmitted on                         |   |
|   |       | the I <sup>2</sup> C bus. If the STO bit is set to one in slave mode, the I <sup>2</sup> C will |   |
|   |       | behave as if a STOP condition has been received, but no STOP                                    |   |
|   |       | condition will be transmitted on the I <sup>2</sup> C bus.                                      |   |
|   |       | If both STA and STO bits are set, the I <sup>2</sup> C will first transmit the STOP             |   |
|   |       | condition (if in master mode) then transmit the START condition.                                |   |
|   |       | The STO bit is cleared automatically: writing a zero to this bit has no                         |   |
|   |       | effect.                                                                                         |   |
| 3 | SI    | I <sup>2</sup> C interrupt flag. (SI can be cleared by writing 1 to the SIC bit in the          | 0 |
|   |       | I2COCONCLR register.)                                                                           |   |
|   |       | This bit is set when the $I^2C$ state changes, and if bit I2CIE is set, the $I^2C$              |   |
|   |       | interrupt is requested. However, entering state F8 does not set SI since                        |   |
|   |       | there is nothing for an interrupt service routine to do in that case.                           |   |
|   |       | The SI is clear by software.                                                                    |   |
| 2 | AA    | Assert acknowledge flag. (AA can be cleared by writing 1 to the AAC bit                         | 0 |
|   |       | in the I2C0CONCLR register.)                                                                    |   |
|   |       | (The I <sup>2</sup> C will not respond as a slave unless AA is set.)                            |   |
|   |       | 0: A not acknowledge (HIGH level to SDA) will be returned during the                            |   |
|   |       | acknowledge clock pulse on the SCL line, when a data byte has been                              |   |
|   |       | received while the $l^2C$ is in the master or slave mode.                                       |   |
|   |       | 1: An acknowledge (low level to SDA) will be returned during the                                |   |
|   |       | acknowledge clock pulse on the SCL line on the following situations:                            |   |
|   |       | 1. The address in the Slave Address Register has been received.                                 |   |
|   |       | 2. The General Call address has been received while the General Call                            |   |
|   |       | bit (GC) in the ADR register is set.                                                            |   |
|   |       | 3. A data byte has been received while the I <sup>2</sup> C is in the master or slave           |   |
|   |       | mode.                                                                                           |   |
| 1 | XADRF | I <sup>2</sup> C Extended Slave Address FLAG (10-bit addressing) (Read Only)                    | 0 |
| _ |       | 0: l <sup>2</sup> C slave address is not match.                                                 |   |
|   |       | 1: I <sup>2</sup> C slave address is match with 10-bit address. This bit is clear when          |   |
|   |       | new data is transmit/receive.                                                                   |   |
| 0 | ADRF  | I <sup>2</sup> C Slave Address FLAG (7-bitaddressing) (Read Only)                               | 0 |
| U |       | 0: I <sup>2</sup> C slave address is not match.                                                 |   |
|   |       | 1: I <sup>2</sup> C slave address is match with 7-bit address. This bit is clear when           |   |
|   |       | new data is transmit/receive.                                                                   |   |
|   |       |                                                                                                 |   |

Table 2.4.7.1 I<sup>2</sup>C Control Set Register (I2CxCONSET)



## 2.4.7.2 I<sup>2</sup>C Control Clear Register (I2CxCONCLR)

The register controls clearing of bit that control operation of the  $I^2C$  interface. Writing a one of this register causes the corresponding bit in the  $I^2C$  control register to be cleared, writing a zero has no effect.

| Bit  | Symbol | Description                                                                              |       |  |  |
|------|--------|------------------------------------------------------------------------------------------|-------|--|--|
|      |        |                                                                                          | value |  |  |
| 31:8 | -      | Reserved, should not write value to the none defined bits                                | -     |  |  |
| 7    | I2CIEC | I <sup>2</sup> C interrupt disable. Writing a 1 to this bit clears the I2CIEC bit in the | 0     |  |  |
|      |        | I2C0CONSET register. Writing 0 has no effect.                                            |       |  |  |
| 6    | I2CENC | I <sup>2</sup> C interface disable. Writing a 1 to this bit clears the I2CENC bit in     | 0     |  |  |
|      |        | the I2C0CONSET register. Writing 0 has no effect.                                        |       |  |  |
| 5    | STAC   | START flag clear. Writing a 1 to this bit clears the STA bit in the                      | 0     |  |  |
|      |        | I2C0CONSET register. Writing 0 has no effect.                                            |       |  |  |
| 4    | -      | Reserved, should not write value to the none defined bits                                | -     |  |  |
| 3    | SIC    | I <sup>2</sup> C interrupt clear. Writing a 1 to this bit clears the SIC bit in the      |       |  |  |
|      |        | I2C0CONSET register. Writing 0 has no effect.                                            |       |  |  |
| 2    | AAC    | Assert acknowledge clear. Writing a 1 to this bit clears the AAC bit in                  | 0     |  |  |
|      |        | the I2C0CONSET register. Writing 0 has no effect.                                        |       |  |  |
| 1:0  | -      | Reserved, should not write value to the none defined bits                                | -     |  |  |

Table 2.4.7.2 I<sup>2</sup>C Control Clear Register (I2CxCONCLR)

## 2.4.7.3 I<sup>2</sup>C Status Register (I2CxSTAT)

This register contains a 5-bits status code in the five MSBs; another three LSBs are always zero.

There are 32 possible codes, listed in the table overleaf, 30 of which are status codes and two of which are unused.

| Bit  | Symbol | Description                                                                         | Reset |
|------|--------|-------------------------------------------------------------------------------------|-------|
|      |        |                                                                                     | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits                           | -     |
| 7:3  | Status | These bits give the actual status information about the I <sup>2</sup> C interface. | 0x1F  |
| 2:0  | -      | Reserved, should not write value to the none defined bits                           | -     |

Table 2.4.7.3.1 I<sup>2</sup>C Status Register (I2CxSTAT)



| Code | Status                                                                                     |
|------|--------------------------------------------------------------------------------------------|
| 00h  | Bus error (Master mode only)                                                               |
| 08h  | START condition transmitted                                                                |
| 10h  | Repeated START condition transmitted                                                       |
| 18h  | Address + Write bit transmitted, ACK received                                              |
| 20h  | Address + Write bit transmitted, Not ACK received                                          |
| 28h  | Data byte transmitted in master mode, ACK received                                         |
| 30h  | Data byte transmitted in master mode, Not ACK received                                     |
| 38h  | Arbitration lost in address or data byte                                                   |
| 40h  | Address + Read bit transmitted, ACK received                                               |
| 48h  | Address + Read bit transmitted, Not ACK received                                           |
| 50h  | Data byte received in master mode, ACK transmitted                                         |
| 58h  | Data byte received in master mode, Not ACK transmitted                                     |
| 60h  | Slave address + Write bit received, ACK transmitted                                        |
| 68h  | Arbitration lost in address as master, slave address + Write bit received, ACK transmitted |
| 70h  | General Call Address received, ACK transmitted                                             |
| 78h  | Arbitration lost in address as master, General Call Address received, ACK transmitted      |
| 80h  | Data byte received after slave address received, ACK transmitted                           |
| 88h  | Data byte received after slave address received, Not ACK transmitted                       |
| 90h  | Data byte received after General Call Address received, ACK transmitted                    |
| 98h  | Data byte received after General Call Address received, Not ACK transmitted                |
| A0h  | STOP or repeated START condition received in slave mode                                    |
| A8h  | Slave address + Read bit received, ACK transmitted                                         |
| B0h  | Arbitration lost in address as master, slave address + Read bit received, ACK transmitted  |
| B8h  | Data byte transmitted in slave mode, ACK received                                          |
| C0h  | Data byte transmitted in slave mode, Not ACK received                                      |
| C8h  | Last byte transmitted in slave mode, ACK received                                          |
| D0h  | Last byte transmitted in slave mode, Not ACK received                                      |
| D8h  | Unused                                                                                     |
| E0h  | Second Address byte transmitted, ACK received                                              |
| E8h  | Second Address byte transmitted, Not ACK received                                          |
| F0h  | Unused                                                                                     |
| F8h  | No relevant status information, IFLG=0                                                     |

Table 2.4.7.3.2 I<sup>2</sup>C Status Code



### 2.4.7.4 I<sup>2</sup>C Data Register (I2CxDAT)

The Register is hold data values that have been received or transmitted.

| Bit  | Symbol | Description                                                                       | Reset<br>value |
|------|--------|-----------------------------------------------------------------------------------|----------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits                         | -              |
| 7:0  | Data   | This register holds data values that have been received or are to be transmitted. | 0x00           |

Table 2.4.7.4 I<sup>2</sup>C Data Register (I2CxDAT)

#### 2.4.7.5 I<sup>2</sup>C Clock Control Register (I2CxCLK)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:7 | -      | Reserved, should not write value to the none defined bits | -           |
| 6:4  | М      | FSAMP = PCLK / 2M                                         | 0           |
| 3:0  | N      | $FSCL = PCLK / (2M \times (N+1) \times 10)$               | 0           |

Table 2.4.7.5 I<sup>2</sup>C Clock Control Register (I2CxCLK)

#### 2.4.7.6 I<sup>2</sup>C Slave Address Registers (I2CxADR0/I2CxADR1/I2CxADR2/I2CxADR3)

The register is readable and writable and is only used when device I<sup>2</sup>C interface is set to slave mode. In master mode, the register has no effect. The LSB of the address register is the General Call bit. When the bit is set, the General Call address is recognized.

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:8 | -       | Reserved, should not write value to the none defined bits | -           |
| 7:1  | Address | The I <sup>2</sup> C device address for slave mode.       | 0x00        |
| 0    | GC      | General Call enable bit.                                  | 0           |

Table 2.4.7.6 I<sup>2</sup>C Slave Address Registers (I2CxADR0/I2CxADR1/I2CxADR2/I2CxADR3)

### 2.4.7.7 I<sup>2</sup>C Salve Address Mask Registers (I2CxADM0/I2CxADM1/I2CxADM2/I2CxADM3)

The 7 bits registers each contain seven active bits [7:1]. Any bit in these registers which is set to "1" will cause an automatic compare in the corresponding bit for the received address when it



is compared to the address register which are masked are not taken into account in determining an address match.

bits[31:8] and bit[0] of the mask registers are unused and should not be written to. These bits will always read back as "0".

| Bit  | Symbol | Description                                                         | Reset |
|------|--------|---------------------------------------------------------------------|-------|
|      |        |                                                                     | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits           | -     |
| 7:1  | MASK   | Mask bits.                                                          | 0x7F  |
|      |        | 0: The received corresponding address bit doesn't care.             |       |
|      |        | 1: The received corresponding address bit should be exact the same  |       |
|      |        | as address register.                                                |       |
|      |        | The mask register has no effect on comparison to the General Call   |       |
|      |        | address.                                                            |       |
|      |        | When an address-match interrupt occurs, the processor will have to  |       |
|      |        | read the data register (DAT) to determine what the received address |       |
|      |        | was that actually caused the match.                                 |       |
| 0    | -      | Reserved.                                                           | -     |

Table 2.4.7.7 I<sup>2</sup>C Salve Address Mask Registers (I2CxADM0/I2CxADM1/I2CxADM2/I2CxADM3)

#### 2.4.7.8 I<sup>2</sup>C Extended Slave Address Registers (I2CxXADR0)

The register is readable and writable and is only used when device I<sup>2</sup>C interface is set to extended slave mode. In master mode, the register has no effect. The LSB of the address register is the General Call bit. When the bit is set, the General Call address is recognized.

| Bit   | Symbol  | Description                                               | Reset value |
|-------|---------|-----------------------------------------------------------|-------------|
| 31:11 | -       | Reserved, should not write value to the none defined bits | -           |
| 10:1  | Address | The I <sup>2</sup> C device address for slave mode.       | 0x000       |
| 0     | GC      | General Call enable bit.                                  | 0           |

Table 2.4.7.8 I<sup>2</sup>C Extended Slave Address Registers (I2CxXADR0)

#### 2.4.7.9 I<sup>2</sup>C Extended Slave Address Mask Registers (I2CxXADM0)

The 8 bits registers each contain seven active bits (8:1). Any bit in these registers which is set to "1" will cause an automatic compare in the corresponding bit for the received address when it



is compared to the address register which are masked are not taken into account in determining an address match.

Bits (31:9) and bit (0) of the mask registers are unused and should not be written to. These bits will always read back as "0".

| Bit  | Symbol | Description                                                         | Reset |
|------|--------|---------------------------------------------------------------------|-------|
|      |        |                                                                     | value |
| 31:9 | -      | Reserved, should not write value to the none defined bits           | -     |
| 8:1  | MASK   | Mask bits.                                                          | 0xFF  |
|      |        | 0: The received corresponding address bit is don't care.            |       |
|      |        | 1: The received corresponding address bit should be exact the same  |       |
|      |        | as address register.                                                |       |
|      |        | The mask register has no effect on comparison to the General Call   |       |
|      |        | address.                                                            |       |
|      |        | When an address-match interrupt occurs, the processor will have to  |       |
|      |        | read the data register (DAT) to determine what the received address |       |
|      |        | was that actually caused the match.                                 |       |
| 0    | -      | Reserved, should not write value to the none defined bits           | -     |

Table 2.4.7.9 I<sup>2</sup>C Extended Slave Address Mask Registers (I2CxXADM0)

#### 2.4.7.10 I<sup>2</sup>C Software Reset Register (I2CxRST)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7:0  | RST    | I <sup>2</sup> C software reset by writes 0x07.           | 0x00        |

Table 2.4.7.10 I<sup>2</sup>C Software Reset Register (I2CxRST)



#### 2.4.8 Analog-to-Digital Converter (ADC) (ADC Base address = 0x4300\_0000)

HSMicro HS6207 has 12bit Successive Approximation Register (SAR) analog to digital converter and measurement range from 0.01\*AVDD to 0.99\*AVDD. The analog to digital converter has 8-input source with up to 4096 step resolution to transfer analog signal to digital data.

| Name    | Offset | Access | Description                                | Reset value |
|---------|--------|--------|--------------------------------------------|-------------|
| ADCCON  | 0x000  | R/W    | A/D Control Register.                      | 0x0         |
| ADCSCAN | 0x004  | R/W    | A/D Scan Register.                         | 0x000       |
| ADCDAT0 | 0x008  | RO     | A/D Channel 0 Data Register.               | 0x000       |
| ADCDAT1 | 0x00C  | RO     | A/D Channel 1 Data Register.               | 0x000       |
| ADCDAT2 | 0x010  | RO     | A/D Channel 2 Data Register.               | 0x000       |
| ADCDAT3 | 0x014  | RO     | A/D Channel 3 Data Register.               | 0x000       |
| ADCDAT4 | 0x018  | RO     | A/D Channel 4 Data Register.               | 0x000       |
| ADCDAT5 | 0x01C  | RO     | A/D Channel 5 Data Register.               | 0x000       |
| ADCDAT6 | 0x020  | RO     | A/D Channel 6 Data Register.               | 0x000       |
| ADCDAT7 | 0x024  | RO     | A/D Channel 7 Data Register.               | 0x000       |
| ADCIMSC | 0x028  | R/W    | A/D Interrupt Mask Set and Clear Register. | 0x00        |
| ADCRIS  | 0x02C  | RO     | A/D Raw Interrupt Status Register.         | 0x00        |
| ADCMIS  | 0x030  | RO     | A/D Masked Interrupt Status Register.      | 0x00        |
| ADCICLR | 0x034  | WO     | A/D Interrupt Clear Register.              | 0x00        |

Note: Please switch pin settings to input mode before ADC enable. (Register GPIOxPMS)

Table 2.4.8 Register Overview: Analog-to-Digital Converter (ADC)

#### 2.4.8.1 A/D Control Register (ADCCON)

The register provides bit to select A/D channels be converted, A/D timing and A/D modes.

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:5 | -      | Reserved, should not write value to the none defined bits | -           |
| 4    | ADCEN  | A/D Converter Enable.                                     | 0           |
|      |        | 0: Disable                                                |             |
|      |        | 1: Enable                                                 |             |
| 3    | ADCMS  | A/D Mode Select.                                          | 0           |
|      |        | 0: Single cycle scan analog input channel 1~7             |             |
|      |        | 1: Continuous scan analog input channel 1~7               |             |



### HSMicro HS6207<sup>™</sup> Series Technical Reference Manual

| 2:0 | ADCDIV | A/D Division. (The maximum clock frequency is 3.2MHz.) | 0 |
|-----|--------|--------------------------------------------------------|---|
|     |        | FADC = PCLK / 2ADCDIV                                  |   |
|     |        | Sampling Rate = FADC / 16                              |   |

Table 2.4.8.1 A/D Control Register (ADCCON)

# 2.4.8.2 A/D Scan Register (ADCSCAN)

| Bit  | Symbol | Description                                                    | Reset |
|------|--------|----------------------------------------------------------------|-------|
|      |        |                                                                | value |
| 31:9 | -      | Reserved, should not write value to the none defined bits      | -     |
| 8    | ADCST  | A/D Converter Start. (Clear by software when single cycle scan | 0     |
|      |        | finish)                                                        |       |
|      |        | 0: Conversion stop                                             |       |
|      |        | 1: Conversion start                                            |       |
| 7    | ADCE7  | Analog Input Channel 7 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 6    | ADCE6  | Analog Input Channel 6 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 5    | ADCE5  | Analog Input Channel 5 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 4    | ADCE4  | Analog Input Channel 4 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 3    | ADCE3  | Analog Input Channel 3 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 2    | ADCE2  | Analog Input Channel 2 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 1    | ADCE1  | Analog Input Channel 1 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |
| 0    | ADCE0  | Analog Input Channel 0 Enable.                                 | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |

Table 2.4.8.2 A/D Scan Register (ADCSCAN)



### 2.4.8.3 A/D Channel 0~7 Data Register (ADCDATx)

The register is read only for analog to digital conversion result.

| Bit   | Symbol | Description                                               | Reset value |
|-------|--------|-----------------------------------------------------------|-------------|
| 31:12 | -      | Reserved, should not write value to the none defined bits | -           |
| 11:0  | RSLT   | A/D Conversion Result                                     | 0           |

Table 2.4.8.3 A/D Channel 0~7 Data Register (ADCDATx)

#### 2.4.8.4 A/D Interrupt Mask Set and Clear Register (ADCIMSC)

The register is set interrupt mask and clear for each A/D channel.

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:8 | -        | Reserved, should not write value to the none defined bits | -           |
| 7    | ADCIMSC7 | Analog Input Channel 7 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 6    | ADCIMSC6 | Analog Input Channel 6 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 5    | ADCIMSC5 | Analog Input Channel 5 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 4    | ADCIMSC4 | Analog Input Channel 4 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 3    | ADCIMSC3 | Analog Input Channel 3 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 2    | ADCIMSC2 | Analog Input Channel 2 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 1    | ADCIMSC1 | Analog Input Channel 1 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |
| 0    | ADCIMSCO | Analog Input Channel 0 Interrupt Mask Set and Clear.      | 0           |
|      |          | 0: Disable                                                |             |
|      |          | 1: Enable                                                 |             |

Table 2.4.8.4 A/D Interrupt Mask Set and Clear Register (ADCIMSC)



### 2.4.8.5 A/D Raw Interrupt Status Register (ADCRIS)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:8 | -       | Reserved, should not write value to the none defined bits | -           |
| 7    | ADCRIS7 | Analog Input Channel 7 Raw Interrupt Status               | 0           |
| 6    | ADCRIS6 | Analog Input Channel 6 Raw Interrupt Status               | 0           |
| 5    | ADCRIS5 | Analog Input Channel 5 Raw Interrupt Status               | 0           |
| 4    | ADCRIS4 | Analog Input Channel 4 Raw Interrupt Status               | 0           |
| 3    | ADCRIS3 | Analog Input Channel 3 Raw Interrupt Status               | 0           |
| 2    | ADCRIS2 | Analog Input Channel 2 Raw Interrupt Status               | 0           |
| 1    | ADCRIS1 | Analog Input Channel 1 Raw Interrupt Status               | 0           |
| 0    | ADCRIS0 | Analog Input Channel 0 Raw Interrupt Status               | 0           |

Table 2.4.8.5 A/D Raw Interrupt Status Register (ADCRIS)

#### 2.4.8.6 A/D Masked Interrupt Status Register (ADCMIS)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:8 | -       | Reserved, should not write value to the none defined bits | -           |
| 7    | ADCMIS7 | Analog Input Channel 7 Masked Interrupt Status            | 0           |
| 6    | ADCMIS6 | Analog Input Channel 6 Masked Interrupt Status            | 0           |
| 5    | ADCMIS5 | Analog Input Channel 5 Masked Interrupt Status            | 0           |
| 4    | ADCMIS4 | Analog Input Channel 4 Masked Interrupt Status            | 0           |
| 3    | ADCMIS3 | Analog Input Channel 3 Masked Interrupt Status            | 0           |
| 2    | ADCMIS2 | Analog Input Channel 2 Masked Interrupt Status            | 0           |
| 1    | ADCMIS1 | Analog Input Channel 1 Masked Interrupt Status            | 0           |
| 0    | ADCMIS0 | Analog Input Channel 0 Masked Interrupt Status            | 0           |

Table 2.4.8.6 A/D Masked Interrupt Status Register (ADCMIS)

### 2.4.8.7 A/D Interrupt Clear Register (ADCICLR)

| Bit  | Symbol   | Description                                                     | Reset |
|------|----------|-----------------------------------------------------------------|-------|
|      |          |                                                                 | value |
| 31:8 | -        | Reserved, should not write value to the none defined bits       | -     |
| 7    | ADCICLR7 | Writing a 1 to this bit clears Analog Input Channel 7 Interrupt | 0     |
|      |          | Status                                                          |       |
| 6    | ADCICLR6 | Writing a 1 to this bit clears Analog Input Channel 6 Interrupt | 0     |
|      |          | Status                                                          |       |



### HSMicro HS6207<sup>™</sup> Series Technical Reference Manual

| 5 | ADCICLR5 | Writing a 1 to this bit clears Analog Input Channel 5 Interrupt<br>Status | 0 |
|---|----------|---------------------------------------------------------------------------|---|
| 4 | ADCICLR4 | Writing a 1 to this bit clears Analog Input Channel 4 Interrupt<br>Status | 0 |
| 3 | ADCICLR3 | Writing a 1 to this bit clears Analog Input Channel 3 Interrupt<br>Status | 0 |
| 2 | ADCICLR2 | Writing a 1 to this bit clears Analog Input Channel 2 Interrupt<br>Status | 0 |
| 1 | ADCICLR1 | Writing a 1 to this bit clears Analog Input Channel 1 Interrupt<br>Status | 0 |
| 0 | ADCICLR0 | Writing a 1 to this bit clears Analog Input Channel 0 Interrupt<br>Status | 0 |

Table 2.4.8.7 A/D Interrupt Clear Register (ADCICLR)



# 2.4.9 System Configuration (SYSCON Base address = 0x5000\_0000)

| Name     | Offset | Access | Description                           | Reset value |
|----------|--------|--------|---------------------------------------|-------------|
| DID      | 0x000  | RO     | Device Identification Number Register | -           |
| AHBCKDIV | 0x004  | R/W    | AHB CLK Division Register             | 0x000       |
| APBCKDIV | 0x008  | R/W    | APB CLK Division Register             | 0x00        |
| APBCKEN  | 0x00C  | R/W    | APB CLK Enable Register               | 0x7FFF      |
| CLKODIV  | 0x010  | R/W    | Clock Output pin Division Register    | 0x000       |
| PCON     | 0x014  | R/W    | Power Control Register                | 0x0         |
| RSTCON   | 0x018  | WO     | Reset Control Register                | 0x00000000  |
| RSTSTAT  | 0x01C  | R/W    | Reset Status Register                 | -           |
| CLKCON   | 0x020  | R/W    | Clock Source Control Register         | 0xF         |
| CLKSEL   | 0x024  | R/W    | Clock Source Select Register          | 0x0         |
| CLKSTAT  | 0x028  | RO     | Clock Source Status Register          | 0x1         |
| APBCKSEL | 0x02C  | R/W    | APB Clock Source Select Register      | 0x0         |
| IOMUX    | 0x030  | RO     | Read from User Configuration IOMUX    | -           |
| IOP00CFG | 0x040  | R/W    | GPIO P00 Configuration Register       | 0x0         |
| IOP01CFG | 0x044  | R/W    | GPIO P01 Configuration Register       | 0x0         |
| IOP02CFG | 0x048  | R/W    | GPIO P02 Configuration Register       | 0x0         |
| IOP03CFG | 0x04C  | R/W    | GPIO P03 Configuration Register       | 0x0         |
| IOP04CFG | 0x050  | R/W    | GPIO P04 Configuration Register       | 0x0         |
| IOP05CFG | 0x054  | R/W    | GPIO P05 Configuration Register       | 0x0         |
| IOP06CFG | 0x058  | R/W    | GPIO P06 Configuration Register       | 0x0         |
| IOP07CFG | 0x05C  | R/W    | GPIO P07 Configuration Register       | 0x0         |
| IOP10CFG | 0x060  | R/W    | GPIO P10 Configuration Register       | 0x0         |
| IOP11CFG | 0x064  | R/W    | GPIO P11 Configuration Register       | 0x0         |
| IOP12CFG | 0x068  | R/W    | GPIO P12 Configuration Register       | 0x0         |
| IOP13CFG | 0x06C  | R/W    | GPIO P13 Configuration Register       | 0x0         |
| IOP14CFG | 0x070  | R/W    | GPIO P14 Configuration Register       | 0x0         |
| IOP15CFG | 0x074  | R/W    | GPIO P15 Configuration Register       | 0x0         |
| IOP16CFG | 0x078  | R/W    | GPIO P16 Configuration Register       | 0x0         |
| IOP17CFG | 0x07C  | R/W    | GPIO P17 Configuration Register       | 0x0         |
| IOP20CFG | 0x080  | R/W    | GPIO P20 Configuration Register       | 0x0         |
| IOP21CFG | 0x084  | R/W    | GPIO P21 Configuration Register       | 0x0         |
| IOP22CFG | 0x088  | R/W    | GPIO P22 Configuration Register       | 0x0         |
| IOP23CFG | 0x08C  | R/W    | GPIO P23 Configuration Register       | 0x0         |
| IOP24CFG | 0x090  | R/W    | GPIO P24 Configuration Register       | 0x0         |
| IOP25CFG | 0x094  | R/W    | GPIO P25 Configuration Register       | 0x0         |
| IOP26CFG | 0x098  | R/W    | GPIO P26 Configuration Register       | 0x0         |
| IOP27CFG | 0x09C  | R/W    | GPIO P27 Configuration Register       | 0x0         |



| IOP30CFG | 0x0A0 | R/W | GPIO P30 Configuration Register | 0x0 |
|----------|-------|-----|---------------------------------|-----|
|----------|-------|-----|---------------------------------|-----|

Table 2.4.9 Register Overview: System Configuration (SYSCON)

### **2.4.9.1** Device Identification Number Register (DID)

The register could read HS6207 series device ID number.

| Bit   | Symbol   | Description                              | Reset value |
|-------|----------|------------------------------------------|-------------|
| 31:16 | DNO      | Device number.                           | 0x4B02      |
| 15:8  | Reserved | Reserved. Please Ignore these bits.      | -           |
| 7:0   | DSF      | Device Size of Flash Programming memory. | -           |
|       |          | 0x04 : for KN02G01A device               |             |
|       |          | 0x08 : for KN02G02A device               |             |
|       |          | 0x0C : for KN02G03A device               |             |
|       |          | 0x10 : for KN02G04A device               |             |
|       |          | 0x14 : for KN02G05A device               |             |
|       |          | 0x18 : for KN02G06A device               |             |
|       |          | 0x1C : for KN02G07A device               |             |

Table 2.4.9.1 Device Identification Number Register (DID)

#### 2.4.9.2 AHB CLK Division Register (AHBCKDIV)

The "DCE" register control external/internal input clock is double clock to system clock.

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7:0  | AHBDIV | System AHB clock divider values                           | 0x00        |
|      |        | 0: HCLK = FSYS                                            |             |
|      |        | 1~255: Divide by 2×DIV (HCLK = FSYS / (2×DIV)).           |             |

Table 2.4.9.2 AHB CLK Division Register (AHBCKDIV)

#### 2.4.9.3 APB CLK Division Register (APBCKDIV)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7:0  | APBDIV | System APB clock divider values                           | 0x00        |
|      |        | 0: PCLK = HCLK                                            |             |
|      |        | 1~255: Divide by 2×DIV (PCLK = HCLK / (2×DIV)).           |             |

Table 2.4.9.3 APB CLK Division Register (APBCKDIV)



# 2.4.9.4 APB CLK Enable Register (APBCKEN)

| Bit   | Symbol    | Description                                               | Reset value |
|-------|-----------|-----------------------------------------------------------|-------------|
| 31:13 | -         | Reserved, should not write value to the none defined bits | -           |
| 12    | PWMCE     | Capture/PWM PCLK Enable                                   | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 11    | ADCCE     | ADC PCLK Enable                                           | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 10    | -         | Reserved, should not write value to the none defined bits | -           |
| 9     | SSPOCE    | SSP0 PCLK Enable                                          | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 8     | -         | Reserved, should not write value to the none defined bits | -           |
| 7     | I2C0CE    | I2C0 PCLK Enable                                          | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 6     | -         | Reserved, should not write value to the none defined bits | -           |
| 5     | UART2CE   | UART2 PCLK Enable                                         | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 4     | UART1CE   | UART1 PCLK Enable                                         | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 3     | UARTOCE   | UARTO PCLK Enable                                         | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 2     | -         | Reserved, should not write value to the none defined bits | -           |
| 1     | TIMER01CE | TIMER01 PCLK Enable                                       | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |
| 0     | WDTCE     | WDT PCLK Enable                                           | 1           |
|       |           | 0: Disable                                                |             |
|       |           | 1: Enable                                                 |             |

Table 2.4.9.4 APB CLK Enable Register (APBCKEN)



#### 2.4.9.5 Clock Output pin Division Register (CLKODIV)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:9 | -      | Reserved, should not write value to the none defined bits | -           |
| 8    | EN     | Clock output enable                                       | 0           |
| 7:0  | DIV    | Clock output divider values                               | 0x00        |

Table 2.4.9.5 Clock Output pin Division Register (CLKODIV)

#### 2.4.9.6 Power Control Register (PCON)

| Bit  | Symbol | Description                                                    | Reset |
|------|--------|----------------------------------------------------------------|-------|
|      |        |                                                                | value |
| 31:1 | DPDKEY | Enable write access to PCON[0] by writing 0x 2AD5334C. Disable |       |
|      |        | write access by writing any other value.                       |       |
| 0    | DPDEN  | Deep Power Down Enable                                         | 0     |
|      |        | 0: Disable                                                     |       |
|      |        | 1: Enable                                                      |       |

Table 2.4.9.6 Power Control Register (PCON)

Note: Entry Deep Power Down by write 0x55AA6699 to PCON.

#### 2.4.9.7 Reset Control Register (RSTCON)

| Bit  | Symbol                                                               | Description                                                    | Reset value |
|------|----------------------------------------------------------------------|----------------------------------------------------------------|-------------|
| 31:2 | RSTKEY                                                               | Enable write access to RSTCON[1:0] by writing 0x156A99A6.      | 0x00000000  |
|      |                                                                      | Disable write access by writing any other value.               |             |
| 1    | 1 CPURST CPU kernel Reset (Set this bit will reset the Cortex-M0 CPU |                                                                | 0           |
|      |                                                                      | kernel and FMC, but it won't reload Configuration)             |             |
|      |                                                                      | 0: Normal                                                      |             |
|      |                                                                      | 1: Reset CPU                                                   |             |
| 0    | MCURST                                                               | MCU Reset                                                      | 0           |
|      |                                                                      | 0: Normal                                                      |             |
|      |                                                                      | 1: Reset MCU, the Cortex-M0 CPU had issued the reset signal to |             |
|      |                                                                      | reset the system by software writing 1                         |             |

Table 2.4.9.7 Reset Control Register (RSTCON)

Note: MCU reset by write 0x55AA6699 to RSTCON; CPU reset by write 0x55AA669A to RSTCON.



## 2.4.9.8 Reset Status Register (RSTSTAT)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:3 | -      | Reserved, should not write value to the none defined bits | -           |
| 2    | CPURS  | CPU Reset Status                                          | 0           |
|      |        | 0: No CPU reset detected.                                 |             |
|      |        | 1: CPU reset detected.                                    |             |
| 1    | MCURS  | MCU Reset Status                                          | 0           |
|      |        | 0: No MCU reset detected.                                 |             |
|      |        | 1: MCU reset detected.                                    |             |
| 0    | WDTRS  | WDT Reset Status                                          | 0           |
|      |        | 0: No WDT reset detected.                                 |             |
|      |        | 1: WDT reset detected.                                    |             |

Table 2.4.9.8 Reset Status Register (RSTSTAT)

### 2.4.9.9 Clock Source Control Register (CLKCON)

| Bit   | Symbol | Description                                                  | Reset value |
|-------|--------|--------------------------------------------------------------|-------------|
| 31:16 | KEY    | 0x5A69 must be written whenever this register is written. If | -           |
|       |        | not written as Key, the write operation is ignored and no    |             |
|       |        | bits are written into the register.                          |             |
| 15:5  | -      | Reserved, should not write value to the none defined bits    | -           |
| 4     | XOSCEN | External OSC Enable                                          | 0           |
|       |        | 0: Disable                                                   |             |
|       |        | 1: Enable                                                    |             |
| 3     | IRCEN  | Internal OSC Enable                                          | 1           |
|       |        | 0: Disable                                                   |             |
|       |        | 1: Enable                                                    |             |
| 2:0   | IRCSEL | Internal OSC Select                                          | 0x7         |
|       |        | 0x0 : 1MHz (20%)                                             |             |
|       |        | 0x1 : 2MHz (20%)                                             |             |
|       |        | 0x2 : 4MHz (20%)                                             |             |
|       |        | 0x3 : 8MHz (20%)                                             |             |
|       |        | 0x4 : 12MHz (20%)                                            |             |
|       |        | 0x5 : 16MHz (20%)                                            |             |
|       |        | 0x6 : 20MHz (20%)                                            |             |
|       |        | 0x7 : 22.1184MHz (2% @ 25℃)                                  |             |

Table 2.4.9.9 Clock Source Control Register (CLKCON)



### 2.4.9.10 Clock Source Select Register (CLKSEL)

| Bit   | Symbol | Description                                                  | Reset value |
|-------|--------|--------------------------------------------------------------|-------------|
| 31:16 | KEY    | 0x5A69 must be written whenever this register is written. If | -           |
|       |        | not written as Key, the write operation is ignored and no    |             |
|       |        | bits are written into the register.                          |             |
| 15:2  | -      | Reserved, should not write value to the none defined bits    | -           |
| 1:0   | CLKSEL | Clock Source Select                                          | 0x0         |
|       |        | 0x0 : IRC is select                                          |             |
|       |        | 0x1 : XOSC is select                                         |             |
|       |        | 0x2 : IRC 10KHz is select                                    |             |
|       |        | 0x3 : Reserved                                               |             |

Table 2.4.9.10 Clock Source Select Register (CLKSEL)

### 2.4.9.11 Clock Source Status Register (CLKSTAT)

| Bit  | Symbol  | Description                                               | Reset value |
|------|---------|-----------------------------------------------------------|-------------|
| 31:2 | -       | Reserved, should not write value to the none defined bits | -           |
| 1    | XOSCSTB | External OSC Status                                       | 0           |
|      |         | 0: External OSC is not stable or disable.                 |             |
|      |         | 1: External OSC is stable.                                |             |
| 0    | IRCSTB  | Internal OSC Status                                       | 1           |
|      |         | 0: IRC is not stable or disable.                          |             |
|      |         | 1: IRC is stable.                                         |             |

Table 2.4.9.11 Clock Source Status Register (CLKSTAT)

### 2.4.9.12 APB Clock Source Select Register (APBCKSEL)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:2 | -        | Reserved, should not write value to the none defined bits | -           |
| 1:0  | TMR01SEL | Timer 0/1 Clock Source Select                             | 0x0         |
|      |          | 0x0 : PCLK is select.                                     |             |
|      |          | 0x1 : IRC is select.                                      |             |
|      |          | 0x2 : XOSC is select.                                     |             |
|      |          | 0x3 : IRC 10KHz is select.                                |             |

Table2.4.9.12 APB Clock Source Select Register (APBCKSEL)



| Bit   | Symbol     | Description                                                    | Reset<br>value |
|-------|------------|----------------------------------------------------------------|----------------|
| 31:10 | -          | Reserved, should not write value to the none defined bits      | -              |
| 9     | XTALPORT   | XTAL pin location                                              | -              |
|       |            | 0: P1.0/P1.1 assign to GPIO function.                          |                |
|       |            | 1: P1.0/P1.1 assign to XTAL function.                          |                |
| 8     | RESETPORT  | External reset pin location                                    | -              |
|       |            | 0: Enable external reset function. When external reset         |                |
|       |            | function enable, the reset pin will assign to P14 and P14 GPIO |                |
|       |            | function MUX will disable.                                     |                |
|       |            | 1: Disable external reset function.                            |                |
| 7:4   | SWCLK_PORT | SWDLK pin location                                             | -              |
|       |            | 0xF : SWCLK pin assign to P13 and P13 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0xE : SWCLK pin assign to P20 and P20 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0xD : SWCLK pin assign to P01 and P01 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0xC : SWCLK pin assign to P26 and P26 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0xB : SWCLK pin assign to P23 and P23 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0xA : SWCLK pin assign to P03 and P03 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0x9 : SWCLK pin assign to P05 and P05 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0x8 : SWCLK pin assign to P16 and P16 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0x7 : SWCLK pin assign to P07 and P07 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0x6 : SWCLK pin assign to P30 and P30 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | 0x5 : SWCLK pin assign to P22 and P22 GPIO function            |                |
|       |            | select disable.                                                |                |
|       |            | Others : SWCLK function pin disable.                           |                |

### 2.4.9.13 Read from User Configuration IOMUX (IOMUX)

### HSMicro HS6207<sup>™</sup> Series Technical Reference Manual



| 3:0 | SWDIO_PORT | SWDIO pin location -                                                |
|-----|------------|---------------------------------------------------------------------|
|     |            | 0xF : SWDIO pin assign to P12 and P12 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0xE : SWDIO pin assign to P00 and P00 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0xD : SWDIO pin assign to P15 and P15 GPIO function select disable. |
|     |            | 0xC : SWDIO pin assign to P25 and P25 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0xB : SWDIO pin assign to P24 and P24 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0xA : SWDIO pin assign to P02 and P02 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x9 : SWDIO pin assign to P04 and P04 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x8 : SWDIO pin assign to P17 and P17 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x7 : SWDIO pin assign to P06 and P06 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x6 : SWDIO pin assign to P27 and P27 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x5 : SWDIO pin assign to P21 and P21 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | Others : Disable SWDIO pin function.                                |

Table 2.4.9.13 Read from User Configuration IOMUX (IOMUX)

### 2.4.9.14 GPIO P00 Configuration Register (IOP00CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP00CFG | P0.0 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : TXD0                                                |             |
|      |          | 0x2 : RXD1                                                |             |
|      |          | 0x3 : TXD2                                                |             |
|      |          | 0x4 : SCL                                                 |             |
|      |          | Ox5 : SSP_SS                                              |             |
|      |          | Ox6 : RTSO                                                |             |
|      |          | 0x7 : PWM0A                                               |             |

Table 2.4.9.14 GPIO PO0 Configuration Register (IOP00CFG)



### 2.4.9.15 GPIO P01 Configuration Register (IOP01CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP01CFG | P0.1 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : RXD0                                                |             |
|      |          | 0x2 : TXD1                                                |             |
|      |          | 0x3 : RXD2                                                |             |
|      |          | 0x4 : SDA                                                 |             |
|      |          | 0x5 : SSP_CLK                                             |             |
|      |          | 0x6 : CTS0                                                |             |
|      |          | 0x7 : PWM0B                                               |             |

Table 2.4.9.15 GPIO P01 Configuration Register (IOP01CFG)

### 2.4.9.16 GPIO P02 Configuration Register (IOP02CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP02CFG | P0.2 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : RXD0                                                |             |
|      |          | 0x2 : TXD1                                                |             |
|      |          | 0x3 : RXD2                                                |             |
|      |          | 0x4 : SDA                                                 |             |
|      |          | 0x5 : SSP_MISO                                            |             |
|      |          | 0x6 : CTS2                                                |             |
|      |          | 0x7 : ADC0                                                |             |

Table 2.4.9.16 GPIO PO2 Configuration Register (IOP02CFG)

#### 2.4.9.17 GPIO P03 Configuration Register (IOP03CFG)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:3 | -      | Reserved, should not write value to the none defined bits | -           |



| 2:0 | IOP03CFG | P0.3 Function Select | 0x0 |
|-----|----------|----------------------|-----|
|     |          | 0x0 : GPIO           |     |
|     |          | 0x1 : TXD0           |     |
|     |          | 0x2 : RXD1           |     |
|     |          | 0x3 : TXD2           |     |
|     |          | 0x4 : SCL            |     |
|     |          | Ox5 : SSP_SS         |     |
|     |          | 0x6 : RTS2           |     |
|     |          | 0x7 : ADC1           |     |

Table 2.4.9.17 GPIO P03 Configuration Register (IOP03CFG)

### 2.4.9.18 GPIO P10 Configuration Register (IOP10CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP10CFG | P1.0 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : TXD0                                                |             |
|      |          | 0x2 : RXD1                                                |             |
|      |          | 0x3 : TXD2                                                |             |
|      |          | 0x4 : SCL                                                 |             |
|      |          | 0x5 : SSP_MOSI                                            |             |
|      |          | 0x6 : RTS1                                                |             |
|      |          | 0x7 : PWM3A                                               |             |

Table 2.4.9.18 GPIO P10 Configuration Register (IOP10CFG)

## 2.4.9.19 GPIO P11 Configuration Register (IOP11CFG)

| Bit  | Symbol   | Description                                                                                                | Reset value |
|------|----------|------------------------------------------------------------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits                                                  | -           |
| 2:0  | IOP11CFG | P1.1 Function Select<br>0x0 : GPIO<br>0x1 : RXD0<br>0x2 : TXD1<br>0x3 : RXD2<br>0x4 : SDA<br>0x5 : SSP_CLK | 0x0         |
|      |          | 0x6 : CTS0<br>0x7 : PWM3B                                                                                  |             |



Table 2.4.9.19 GPIO P11 Configuration Register (IOP11CFG)

### 2.4.9.20 GPIO P12 Configuration Register (IOP12CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP12CFG | P1.2 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : TXD0                                                |             |
|      |          | 0x2 : RXD1                                                |             |
|      |          | 0x3 : TXD2                                                |             |
|      |          | Ox4 : SCL                                                 |             |
|      |          | 0x5 : SSP_SS                                              |             |
|      |          | Ox6 : RTSO                                                |             |
|      |          | 0x7 : PWM2A                                               |             |

Table 2.4.9.20 GPIO P12 Configuration Register (IOP12CFG)

### 2.4.9.21 GPIO P13 Configuration Register (IOP13CFG)

| Bit  | Symbol   | Description                                               | Reset value |
|------|----------|-----------------------------------------------------------|-------------|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |
| 2:0  | IOP13CFG | P1.3 Function Select                                      | 0x0         |
|      |          | 0x0 : GPIO                                                |             |
|      |          | 0x1 : RXD0                                                |             |
|      |          | 0x2 : TXD1                                                |             |
|      |          | 0x3 : RXD2                                                |             |
|      |          | 0x4 : SDA                                                 |             |
|      |          | 0x5 : SSP_MISO                                            |             |
|      |          | 0x6 : CTS1                                                |             |
|      |          | 0x7 : PWM2B                                               |             |

Table 2.4.9.21 GPIO P13 Configuration Register (IOP13CFG)

### 2.4.9.22 GPIO P14 Configuration Register (IOP14CFG)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:3 | -      | Reserved, should not write value to the none defined bits | -           |



| 2:0 | IOP14CFG | P1.4 Function Select | 0x0 |
|-----|----------|----------------------|-----|
|     |          | 0x0 : GPIO           |     |
|     |          | 0x1 : TXD0           |     |
|     |          | 0x2 : RXD1           |     |
|     |          | 0x3 : TXD2           |     |
|     |          | 0x4 : SCL            |     |
|     |          | 0x5 : SSP_MOSI       |     |
|     |          | 0x6 : RTS1           |     |
|     |          | 0x7 : PWM1A          |     |

Table 2.4.9.22 GPIO P14 Configuration Register (IOP14CFG)

## 2.4.9.23 GPIO P15 Configuration Register (IOP15CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |  |
| 2:0  | IOP15CFG | P1.5 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : TXD0                                                |             |  |
|      |          | 0x2 : RXD1                                                |             |  |
|      |          | 0x3 : TXD2                                                |             |  |
|      |          | 0x4 : SCL                                                 |             |  |
|      |          | 0x5 : SSP_MOSI                                            |             |  |
|      |          | 0x6 : RTS1                                                |             |  |
|      |          | 0x7 : PWM1B                                               |             |  |

Table 2.4.9.23 GPIO P15 Configuration Register (IOP15CFG)

## 2.4.9.24 GPIO P20 Configuration Register (IOP20CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |  |
| 2:0  | IOP20CFG | P2.0 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : RXD0                                                |             |  |
|      |          | 0x2 : TXD1                                                |             |  |
|      |          | 0x3 : RXD2                                                |             |  |
|      |          | 0x4 : SDA                                                 |             |  |
|      |          | 0x5 : SSP_MISO                                            |             |  |
|      |          | 0x6 : CTS1                                                |             |  |
|      |          | 0x7 : PWM1A                                               |             |  |



Table 2.4.9.24 GPIO P20 Configuration Register (IOP20CFG)

### 2.4.9.25 GPIO P23 Configuration Register (IOP23CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |  |
| 2:0  | IOP23CFG | P2.3 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : TXD0                                                |             |  |
|      |          | 0x2 : RXD1                                                |             |  |
|      |          | 0x3 : TXD2                                                |             |  |
|      |          | 0x4 : SCL                                                 |             |  |
|      |          | 0x5 : SSP_MOSI                                            |             |  |
|      |          | 0x6 : RTS2                                                |             |  |
|      |          | 0x7 : PWM3B                                               |             |  |

Table 2.4.9.25 GPIO P23 Configuration Register (IOP23CFG)

#### 2.4.9.26 GPIO P24 Configuration Register (IOP24CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | -           |  |
| 2:0  | IOP24CFG | P2.4 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : RXD0                                                |             |  |
|      |          | 0x2 : TXD1                                                |             |  |
|      |          | 0x3 : RXD2                                                |             |  |
|      |          | 0x4 : SDA                                                 |             |  |
|      |          | 0x5 : SSP_CLK                                             |             |  |
|      |          | 0x6 : CTS2                                                |             |  |
|      |          | 0x7 : PWM3A                                               |             |  |

Table 2.4.9.26 GPIO P24 Configuration Register (IOP24CFG)

### 2.4.9.27 GPIO P25 Configuration Register (IOP25CFG)

| В  | it  | Symbol | Description                                               | Reset value |
|----|-----|--------|-----------------------------------------------------------|-------------|
| 33 | 1:3 | -      | Reserved, should not write value to the none defined bits | -           |



| 2:0 | IOP25CFG | P2.5 Function Select 0x0 |  |
|-----|----------|--------------------------|--|
|     |          | 0x0 : GPIO               |  |
|     |          | 0x1 : TXD0               |  |
|     |          | 0x2 : RXD1               |  |
|     |          | 0x3 : TXD2               |  |
|     |          | 0x4 : SCL                |  |
|     |          | Ox5 : SSP_SS             |  |
|     |          | 0x6 : RTS0               |  |
|     |          | 0x7 : PWM2A              |  |

Table 2.4.9.27 GPIO P25 Configuration Register (IOP25CFG)

#### 2.4.9.28 GPIO P26 Configuration Register (IOP26CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | ed bits -   |  |
| 2:0  | IOP26CFG | P2.6 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : RXD0                                                |             |  |
|      |          | 0x2 : TXD1                                                |             |  |
|      |          | 0x3 : RXD2                                                |             |  |
|      |          | 0x4 : SDA                                                 |             |  |
|      |          | 0x5 : SSP_MISO                                            |             |  |
|      |          | 0x6 : CTS1                                                |             |  |
|      |          | 0x7 : PWM2B                                               |             |  |

Table 2.4.9.28 GPIO P26 Configuration Register (IOP26CFG)

### 2.4.9.29 GPIO P30 Configuration Register (IOP30CFG)

| Bit  | Symbol   | Description                                               | Reset value |  |
|------|----------|-----------------------------------------------------------|-------------|--|
| 31:3 | -        | Reserved, should not write value to the none defined bits | ed bits -   |  |
| 2:0  | IOP30CFG | P3.0 Function Select                                      | 0x0         |  |
|      |          | 0x0 : GPIO                                                |             |  |
|      |          | 0x1 : TXD0                                                |             |  |
|      |          | 0x2 : RXD1                                                |             |  |
|      |          | 0x3 : TXD2                                                |             |  |
|      |          | 0x4 : SCL                                                 |             |  |
|      |          | Ox5 : SSP_SS                                              |             |  |
|      |          | 0x6 : RTS2                                                |             |  |
|      |          | 0x7 : PWM0A                                               |             |  |

Table 2.4.9.29 GPIO P30 Configuration Register (IOP30CFG)

#### 2.4.10 Flash Memory Controller (FMC) (FMC Base address = 0x4980\_0000)

| Name    | Offset | Access | Description           | Reset value |
|---------|--------|--------|-----------------------|-------------|
| FMCCON  | 0x000  | R/W    | FMC Control Register. | 0x10        |
| FMCADR  | 0x004  | R/W    | FMC Address Register. | 0x0000000   |
| FMCDAT  | 0x008  | R/W    | FMC Data Register.    | 0x0000000   |
| FMCCMD  | 0x00C  | R/W    | FMC Command Register. | 0x0         |
| FMCLOCK | 0x010  | R/W    | FMC Lock Register.    | 0x0000000   |

Table 2.4.10 Register Overview: Flash Memory Controller (FMC)

#### 2.4.10.1 FMC Control Register (FMCCON)

The register is control FMC boot address mapping and FMC operation

| Bit  | Symbol   | Description Reset                                           |   |
|------|----------|-------------------------------------------------------------|---|
| 31:6 | -        | Reserved, should not write value to the none defined bits - |   |
| 5    | FMCB     | FMC Busy 0                                                  |   |
|      |          | : FMC Normal operation                                      |   |
|      |          | 1: FMC Busy                                                 |   |
| 4    | FMCE     | Flash Boot Address Mapping Enable. 1                        |   |
|      |          | 0: Flash mapping is enabled. Boot from 0x0000_7000.         |   |
|      |          | 1: Flash mapping is disabled. Boot from 0x0000_0000.        |   |
| 3:0  | Reserved | Reserved, should not write value to the none defined bits   | - |

Table 2.4.10.1 FMC Control Register (FMCCON)

#### 2.4.10.2 FMC Address Register (FMCADR)

| Bit   | Symbol        | Description                 | Reset value |
|-------|---------------|-----------------------------|-------------|
| 31:29 | Reserved      | Reserved.                   | -           |
| 28:2  | Address[28:2] | It supports word operation. | 0x0000000   |
| 1:0   | Address[1:0]  | Keep 2'b00.                 | 0x0         |

Table 2.4.10.2 FMC Address Register (FMCADR)



### 2.4.10.3 FMC Data Register (FMCDAT)

Write date to this register before ISP program operation Read data to this register before ISP read operation

| Bit  | Symbol | Description        | Reset value |
|------|--------|--------------------|-------------|
| 31:0 | FMCDAT | FMC Data Register. | 0x0000000   |

Table 2.4.10.3 FMC Data Register (FMCDAT)

#### 2.4.10.4 FMC Command Register (FMCCMD)

| Bit  | Symbol   | Description                                              | Reset |
|------|----------|----------------------------------------------------------|-------|
|      |          |                                                          | value |
| 31:3 | Reserved | Reserved.                                                | -     |
| 2:0  | FMCFUNC  | FMC Function                                             | 0x0   |
|      |          | 0x0: Default                                             |       |
|      |          | 0x1: Flash Read                                          |       |
|      |          | 0x2: Flash Program                                       |       |
|      |          | 0x3: Flash Page Erase (1KBytes/page)                     |       |
|      |          | 0x6: Erase Flash memory (Except ISP mapping space & User |       |
|      |          | Configuration)                                           |       |
|      |          | 0x7: Erase code flash and User Configuration.            |       |

Table 2.4.10.4 FMC Command Register (FMCCMD)

#### 2.4.10.5 FMC Lock Register (FMCLOCK)

| Bit  | Symbol | Description                                                  | Reset value |
|------|--------|--------------------------------------------------------------|-------------|
| 31:1 | FMCKEY | Enable write access to all other registers by writing        | 0x0000000   |
|      |        | 0x2AD5334C. Disable write access by writing any other value. |             |
| 0    | FMCREN | Register write enable                                        | 0           |
|      |        | 0: Write access to all other registers is disabled           |             |
|      |        | 1: Write access to all other registers is enabled            |             |

Table 2.4.10.5 FMC Lock Register (FMCLOCK)

Note: Unlock by write 0x55AA6699 to FMCLOCK. Flash can't write and erase by FMC in lock mode.



### 2.4.11 General Purpose I/O (GPIO) (GPIO0 Base address = 0x5200\_0000; GPIO1 Base address = 0x5280\_0000; GPIO2 Base address = 0x5300\_0000; GPIO3 Base address = 0x5380\_0000)

HSMicro HS6207 series provide up to 16 General Purpose I/O pins with configurable Quasi-bidirectional, Pushpull, Open drain, high impedance input mode (GPIOxPMS register), and each I/O pin also can serve as interrupt input pin. Interrupt cab be configured on edge trigger or level trigger. (GPIOxITYPE register) The 25 pin are arranged in four group named with Port0, Port1, Port2 and Port3. Each pin is independent and has the corresponding register bits to control the pin mode function and data. When MCU reset, the all GPIO pin stay in Quasi-bidirectional mode and port data register, reset value 0x0000.

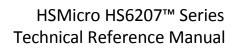

| Name       | Offset | Access | Description                                   | Reset value |
|------------|--------|--------|-----------------------------------------------|-------------|
| GPIOxPMS   | 0x000  | R/W    | GPIO x Pin Mode Select Register.              | 0x0000      |
| GPIOxDOM   | 0x004  | R/W    | GPIO x Data Output Write Mask Register.       | 0x00        |
| GPIOxDO    | 0x008  | R/W    | GPIO x Data Output Register.                  | 0xFF        |
| GPIOxDI    | 0x00C  | RO     | GPIO x Data Input Register.                   | -           |
| GPIOxIMSC  | 0x010  | R/W    | GPIO x Interrupt Mask Set and Clear Register. | 0x00        |
| GPIOxRIS   | 0x014  | RO     | GPIO x Raw Interrupt Status Register.         | 0x00        |
| GPIOxMIS   | 0x018  | RO     | GPIO x Masked Interrupt Status Register.      | 0x00        |
| GPIOxICLR  | 0x01C  | WO     | GPIO x Interrupt Clear Register.              | 0x00        |
| GPIOxITYPE | 0x020  | R/W    | GPIO x Interrupt Type Register.               | 0x00        |
| GPIOxIVAL  | 0x024  | R/W    | GPIO x Interrupt Value Register.              | 0x00        |
| GPIOxIANY  | 0x028  | R/W    | GPIO x Interrupt Any Edge Register.           | 0x00        |
| GPIOxDIDB  | 0x02C  | R/W    | GPIO x Data Input De-bounce Register.         | 0x00        |
| GPIOxDOSET | 0x030  | WO     | GPIO x Data Output Set Register.              | 0x00        |
| GPIOxDOCLR | 0x034  | WO     | GPIO x Data Output Clear Register.            | 0x00        |

Table 2.4.11 Register Overview: General Purpose I/O (GPIO)

### 2.4.11.1 GPIO x Pin Mode Select Register (GPIOxPMS)

The registers are select I/O mode as Quasi-bidirectional, push pull, open drain and input only mode.

| Bit   | Symbol | Description                                               | Reset value |
|-------|--------|-----------------------------------------------------------|-------------|
| 31:16 | -      | Reserved, should not write value to the none defined bits | -           |
| 15:14 | PMS7   | Px.7 Select function mode for GPIO 0x0                    |             |
|       |        | 0x0: Quasi-bidirectional (Pull-up Enable)                 |             |
|       |        | 0x1: Push-pull (Output)                                   |             |
|       |        | 0x2: Open drain (Pull-up Disable)                         |             |
|       |        | 0x3: Input only or ADC input (High-impedance)             |             |





| <b></b> | Г    |                                               |     |
|---------|------|-----------------------------------------------|-----|
| 13:12   | PMS6 | Px.6 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 11:10   | PMS5 | Px.5 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 9:8     | PMS4 | Px.4 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 7:6     | PMS3 | Px.3 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 5:4     | PMS2 | Px.2 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 3:2     | PMS1 | Px.1 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only or ADC input (High-impedance) |     |
| 1:0     | PMS0 | Px.0 Select function mode for GPIO            | 0x0 |
|         |      | 0x0: Quasi-bidirectional (Pull-up Enable)     |     |
|         |      | 0x1: Push-pull (Output)                       |     |
|         |      | 0x2: Open drain (Pull-up Disable)             |     |
|         |      | 0x3: Input only (High-impedance)              |     |

Table 2.4.11.1 GPIO x Pin Mode Select Register (GPIOxPMS)

Note: The external pull up resistor is necessary in open drain mode. The digital output mode of I/O pin only support sink current capability, so the open drain output high is driven by external pull up resistor.



### 2.4.11.2 GPIO x Data Output Write Mask Register (GPIOxDOM)

| Bit  | Symbol | Description                                                | Reset value |
|------|--------|------------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits  | -           |
| 7:0  | DOM    | Data Output Write Mask Register.                           | 0x00        |
|      |        | 0 = GPIOxDO is not masked.                                 |             |
|      |        | 1 = GPIOxDO is masked. DO is not changed by write GPIOxDO. |             |

Table 2.4.11.2 GPIO x Data Output Write Mask Register (GPIOxDOM)

### 2.4.11.3 GPIO x Data Output Register (GPIOxDO)

| Bit  | Symbol | Description                                                       | Reset |
|------|--------|-------------------------------------------------------------------|-------|
|      |        |                                                                   | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits         | -     |
| 7:0  | DO     | Data Output Register. DO can be set by writing 1 to the DO in the | OxFF  |
|      |        | GPIOxDO register, clear by writing 0 to the DO in the GPIOxDO     |       |
|      |        | register. User can read this register get the data output.        |       |
|      |        | Write:                                                            |       |
|      |        | 0 = Clear to low.                                                 |       |
|      |        | 1 = Set to high.                                                  |       |
|      |        | Read:                                                             |       |
|      |        | 0 = Low.                                                          |       |
|      |        | 1 = High.                                                         |       |

Table 2.4.11.3 GPIO x Data Output Register (GPIOxDO)

### 2.4.11.4 GPIO x Data Input Register (GPIOxDI)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7:0  | DI     | Data Input Register.                                      | 0x00        |

Table 2.4.11.4 GPIO x Data Input Register (GPIOxDI)

### 2.4.11.5 GPIO x Interrupt Mask Set and Clear Register (GPIOxIMSC)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |



### HSMicro HS6207<sup>™</sup> Series Technical Reference Manual

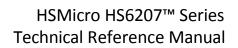

|   |       | ·                                          |   |
|---|-------|--------------------------------------------|---|
| 7 | IMSC7 | Px.7 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 6 | IMSC6 | Px.6 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 5 | IMSC5 | Px.5 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 4 | IMSC4 | Px.4 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 3 | IMSC3 | Px.3 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 2 | IMSC2 | Px.2 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 1 | IMSC1 | Px.1 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |
| 0 | IMSC0 | Px.0 Interrupt Mask Set and Clear Register | 0 |
|   |       | 0: Disable                                 |   |
|   |       | 1: Enable                                  |   |

Table 2.4.11.5 GPIO x Interrupt Mask Set and Clear Register (GPIOxIMSC)

### 2.4.11.6 GPIO x Raw Interrupt Status Register (GPIOxRIS)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | RIS7   | Px.7 Raw Interrupt Status                                 | 0           |
| 6    | RIS6   | Px.6 Raw Interrupt Status                                 | 0           |
| 5    | RIS5   | Px.5 Raw Interrupt Status                                 | 0           |
| 4    | RIS4   | Px.4 Raw Interrupt Status                                 | 0           |
| 3    | RIS3   | Px.3 Raw Interrupt Status                                 | 0           |
| 2    | RIS2   | Px.2 Raw Interrupt Status                                 | 0           |
| 1    | RIS1   | Px.1 Raw Interrupt Status                                 | 0           |
| 0    | RISO   | Px.0 Raw Interrupt Status                                 | 0           |

Table 2.4.11.6 GPIO x Raw Interrupt Status Register (GPIOxRIS)





| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | MIS7   | Px.7 Masked Interrupt Status                              | 0           |
| 6    | MIS6   | Px.6 Masked Interrupt Status                              | 0           |
| 5    | MIS5   | Px.5 Masked Interrupt Status                              | 0           |
| 4    | MIS4   | Px.4 Masked Interrupt Status                              | 0           |
| 3    | MIS3   | Px.3 Masked Interrupt Status                              | 0           |
| 2    | MIS2   | Px.2 Masked Interrupt Status                              | 0           |
| 1    | MIS1   | Px.1 Masked Interrupt Status                              | 0           |
| 0    | MIS0   | Px.0 Masked Interrupt Status                              | 0           |

#### 2.4.11.7 GPIO x Masked Interrupt Status Register (GPIOxMIS)

Table 2.4.11.7 GPIO x Masked Interrupt Status Register (GPIOxMIS)

#### 2.4.11.8 GPIO x Interrupt Clear Register (GPIOxICLR)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | ICLR7  | Writing a 1 to this bit clears Px.7 Interrupt Status      | 0           |
| 6    | ICLR6  | Writing a 1 to this bit clears Px.6 Interrupt Status      | 0           |
| 5    | ICLR5  | Writing a 1 to this bit clears Px.5 Interrupt Status      | 0           |
| 4    | ICLR4  | Writing a 1 to this bit clears Px.4 Interrupt Status      | 0           |
| 3    | ICLR3  | Writing a 1 to this bit clears Px.3 Interrupt Status      | 0           |
| 2    | ICLR2  | Writing a 1 to this bit clears Px.2 Interrupt Status      | 0           |
| 1    | ICLR1  | Writing a 1 to this bit clears Px.1 Interrupt Status      | 0           |
| 0    | ICLR0  | Writing a 1 to this bit clears Px.0 Interrupt Status      | 0           |

Table 2.4.11.8 GPIO x Interrupt Clear Register (GPIOxICLR)

#### 2.4.11.9 GPIO x Interrupt Type Register (GPIOxITYPE)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | ITYPE7 | Px.7 Interrupt Type Register.                             | 0           |
|      |        | 0: Edge trigger                                           |             |
|      |        | 1: Level trigger                                          |             |
| 6    | ITYPE6 | Px.6 Interrupt Type Register.                             | 0           |
|      |        | 0: Edge trigger                                           |             |
|      |        | 1: Level trigger                                          |             |



| ITYPE5 | Px.5 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ITYPE4 | Px.4 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ITYPE3 | Px.3 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ITYPE2 | Px.2 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ITYPE1 | Px.1 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ITYPE0 | Px.0 Interrupt Type Register.        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0: Edge trigger                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1: Level trigger                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | ITYPE4<br>ITYPE3<br>ITYPE2<br>ITYPE1 | 0: Edge trigger1: Level triggerITYPE4Px.4 Interrupt Type Register.0: Edge trigger1: Level trigger |

Table 2.4.11.9 GPIO x Interrupt Type Register (GPIOxITYPE)

### 2.4.11.10 GPIO x Interrupt Value Register (GPIOxIVAL)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | IVAL7  | Px.7 Interrupt Trigger Value.                             | 0           |
|      |        | 0: Level 0 trigger or Falling edge                        |             |
|      |        | 1: Level 1 trigger or Rising edge                         |             |
| 6    | IVAL6  | Px.6 Interrupt Trigger Value.                             | 0           |
|      |        | 0: Level 0 trigger or Falling edge                        |             |
|      |        | 1: Level 1 trigger or Rising edge                         |             |
| 5    | IVAL5  | Px.5 Interrupt Trigger Value.                             | 0           |
|      |        | 0: Level 0 trigger or Falling edge                        |             |
|      |        | 1: Level 1 trigger or Rising edge                         |             |
| 4    | IVAL4  | Px.4 Interrupt Trigger Value.                             | 0           |
|      |        | 0: Level 0 trigger or Falling edge                        |             |
|      |        | 1: Level 1 trigger or Rising edge                         |             |
| 3    | IVAL3  | Px.3 Interrupt Trigger Value.                             | 0           |
|      |        | 0: Level 0 trigger or Falling edge                        |             |
|      |        | 1: Level 1 trigger or Rising edge                         |             |



### HSMicro HS6207<sup>™</sup> Series Technical Reference Manual

| 2 | IVAL2 | Px.2 Interrupt Trigger Value.      | 0 |
|---|-------|------------------------------------|---|
|   |       | 0: Level 0 trigger or Falling edge |   |
|   |       | 1: Level 1 trigger or Rising edge  |   |
| 1 | IVAL1 | Px.1 Interrupt Trigger Value.      | 0 |
|   |       | 0: Level 0 trigger or Falling edge |   |
|   |       | 1: Level 1 trigger or Rising edge  |   |
| 0 | IVAL0 | Px.0 Interrupt Trigger Value.      | 0 |
|   |       | 0: Level 0 trigger or Falling edge |   |
|   |       | 1: Level 1 trigger or Rising edge  |   |

Table 2.4.11.10 GPIO x Interrupt Value Register (GPIOxIVAL)

## 2.4.11.11 GPIO x Interrupt Any Edge Register (GPIOxIANY)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | IANY7  | Px.7 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL7          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 6    | IANY6  | Px.6 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL6          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 5    | IANY5  | Px.5 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL5          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 4    | IANY4  | Px.4 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL4          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 3    | IANY3  | Px.3 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL3          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 2    | IANY2  | Px.2 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL2          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 1    | IANY1  | Px.1 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL1          |             |
|      |        | 1: Any edge can trigger                                   |             |
| 0    | IANY0  | Px.0 Interrupt Trigger Any Edge.                          | 0           |
|      |        | 0: Falling or Rising edge depended on GPIOxIVAL0          |             |
|      |        | 1: Any edge can trigger                                   |             |

Table 2.4.11.11 GPIO x Interrupt Any Edge Register (GPIOxIANY)



### 2.4.11.12 GPIO x Data Input De-bounce Register (GPIOxDIDB)

| Bit  | Symbol | Description                                               | Reset value |
|------|--------|-----------------------------------------------------------|-------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits | -           |
| 7    | DIDB7  | Px.7 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 6    | DIDB6  | Px.6 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 5    | DIDB5  | Px.5 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 4    | DIDB4  | Px.4 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 3    | DIDB3  | Px.3 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 2    | DIDB2  | Px.2 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 1    | DIDB1  | Px.1 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |
| 0    | DIDB0  | Px.0 Input De-bounce                                      | 0           |
|      |        | 0: The Input data is directly from the pin                |             |
|      |        | 1: There will be two stages DFF filter                    |             |

Table 2.4.11.12 GPIO x Data Input De-bounce Register (GPIOxDIDB)

### 2.4.11.13 GPIO x Data Output Set Register (GPIOxDOSET)

| Bit  | Symbol | Description                                                           | Reset<br>value |
|------|--------|-----------------------------------------------------------------------|----------------|
| 31:8 | -      | Reserved, should not write value to the none defined bits             | -              |
| 7:0  | DOS    | Data Output Set Register. DO can be set by writing 1 to the DO in the | 0x00           |
|      |        | GPIOxDOSET register. Writing a zero to this bit has no effect.        |                |
|      |        | Write:                                                                |                |
|      |        | 0 = no effect                                                         |                |
|      |        | 1 = Set to high.                                                      |                |



Table 2.4.11.13 GPIO x Data Output Set Register (GPIOxDOSET)

#### 2.4.11.14 GPIO x Data Output Clear Register (GPIOxDOCLR)

| Bit  | Symbol | Description                                                       | Reset |
|------|--------|-------------------------------------------------------------------|-------|
|      |        |                                                                   | value |
| 31:8 | -      | Reserved, should not write value to the none defined bits         | -     |
| 7:0  | DOC    | Data Output Clear Register. DO can be cleared by writing 1 to the | 0x00  |
|      |        | DOC in the GPIOxDOCLR register. Writing a zero to this bit has no |       |
|      |        | effect.                                                           |       |
|      |        | Write:                                                            |       |
|      |        | 0 = no effect                                                     |       |
|      |        | 1 = Clear to low.                                                 |       |

Table 2.4.11.14 GPIO x Data Output Clear Register (GPIOxDOCLR)

### 2.4.11.15 Quasi-bidirectional mode (pull-up resistor enabled)

Set GPIOxPMS register to 0x0 the Pin (n) in Quasi-bidirectional mode the I/O pin supports digital output and input function at the same time.

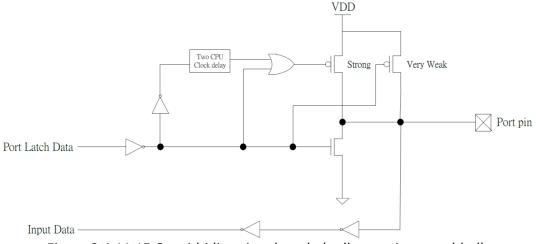



Figure 2.4.11.15 Quasi-bidirectional mode (pull-up resistor enabled)

### 2.4.11.16 Push-pull mode (Output)

Set GPIOxPMS register to 0x1 the Pin (n) in output mode, the I/O pin supports digital output with source/sink current capability.



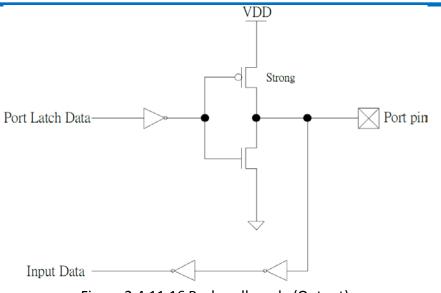
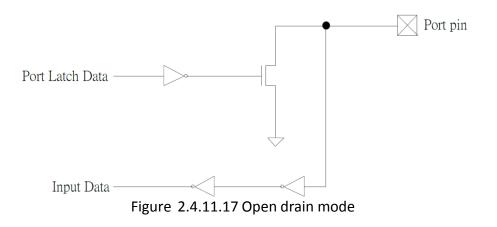




Figure 2.4.11.16 Push-pull mode (Output)

# 2.4.11.17 Open drain mode

Set GPIOxPMS register to 0x2 the Pin (n) in Open-Drain mode and the I/O pin supports digital output function but it only with sink current capability, an additional pull-up resister in need for driving high state.



# 2.4.11.18 Input only mode (high-impedance)

Set GPIOxPMS register to 0x3 the Pin(n) in Input only mode and I/O pin is in high impedance without output drive capability.



### 2.4.12 **Nested Vectored Interrupt Controller (NVIC Base address = 0xE000\_E000)**

This section describes the NVIC and the registers it uses. The NVIC supports:

- An implementation-defined number of interrupts, in the range 1-32.
- A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC registers is:

| Name | Offset | Access | Description                                | Reset value |
|------|--------|--------|--------------------------------------------|-------------|
| ISER | 0x100  | R/W    | Interrupt Set-enable Register.             | 0x0000000   |
| ICER | 0x180  | R/W    | Interrupt Clear-enable Register.           | 0x0000000   |
| ISPR | 0x200  | R/W    | Interrupt Set-pending Register.            | 0x0000000   |
| ICPR | 0x280  | R/W    | Interrupt Clear-pending Register.          | 0x0000000   |
| IPR0 | 0x400  | R/W    | IRQ0 ~ IRQ3 Interrupt Priority Register.   | 0x0000000   |
| IPR1 | 0x404  | R/W    | IRQ4 ~ IRQ7 Interrupt Priority Register.   | 0x0000000   |
| IPR2 | 0x408  | R/W    | IRQ8 ~ IRQ11 Interrupt Priority Register.  | 0x0000000   |
| IPR3 | 0x40C  | R/W    | IRQ12 ~ IRQ15 Interrupt Priority Register. | 0x0000000   |
| IPR4 | 0x410  | R/W    | IRQ16 ~ IRQ19 Interrupt Priority Register. | 0x0000000   |
| IPR5 | 0x414  | R/W    | IRQ20 ~ IRQ23 Interrupt Priority Register. | 0x0000000   |
| IPR6 | 0x418  | R/W    | IRQ24 ~ IRQ27 Interrupt Priority Register. | 0x0000000   |
| IPR7 | 0x41C  | R/W    | IRQ28 ~ IRQ31 Interrupt Priority Register. | 0x0000000   |

Table 2.4.12 Register Overview: Nested Vectored Interrupt Controller (NVIC)

## 2.4.12.1 Accessing the Cortex-M0 NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors. To access the NVIC registers when using CMSIS, use the following functions:

| CMSIS function                            | Description                               |
|-------------------------------------------|-------------------------------------------|
| void NVIC_EnableIRQ(IRQn_Type IRQn)       | Enables an interrupt or exception.        |
| void NVIC_DisableIRQ(IRQn_Type IRQn)      | Disables an interrupt or exception.       |
| void NVIC_SetPendingIRQ(IRQn_Type IRQn)   | Sets the pending status of interrupt or   |
|                                           | exception to 1.                           |
| void NVIC_ClearPendingIRQ(IRQn_Type IRQn) | Clears the pending status of interrupt or |
|                                           | exception to 0.                           |



| uint32_t NVIC_GetPendingIRQ(IRQn_Type<br>IRQn)              | Reads the pending status of interrupt or<br>exception. This function returns non-<br>zero value if the pending status is set to<br>1.     |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| void NVIC_SetPriority(IRQn_Type IRQn,<br>uint32_t priority) | Sets the priority of an interrupt or exception with configurable priority level to 1.                                                     |
| uint32_t NVIC_GetPriority(IRQn_Type IRQn)                   | Reads the priority of an interrupt or exception<br>with configurable priority level.<br>This function returns the current priority level. |

Table 2.4.12.1 Accessing the Cortex-M0 NVIC registers using CMSIS

The input parameter IRQn is the IRQ number.

## 2.4.12.2 Interrupt Set-enable Register (ISER)

The ISER enables interrupts, and shows the interrupts that are enabled.

| Bit  | Symbol | Description                | Reset value |
|------|--------|----------------------------|-------------|
| 31:0 | SETENA | Interrupt set-enable bits. | 0x0000000   |
|      |        | Write:                     |             |
|      |        | 0 = no effect              |             |
|      |        | 1 = enable interrupt.      |             |
|      |        | Read:                      |             |
|      |        | 0 = interrupt disabled     |             |
|      |        | 1 = interrupt enabled.     |             |

Table 2.4.12.2 Interrupt Set-enable Register (ISER)

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

## 2.4.12.3 Interrupt Clear-enable Register (ICER)

The ICER disables interrupts, and shows the interrupts that are enabled.

| Bit Symbol Description Reset value |
|------------------------------------|
|------------------------------------|



| 31:0 | CLRENA | Interrupt clear-enable bits. | 0x0000000 |
|------|--------|------------------------------|-----------|
|      |        | Write:                       |           |
|      |        | 0 = no effect                |           |
|      |        | 1 = disable interrupt.       |           |
|      |        | Read:                        |           |
|      |        | 0 = interrupt disabled       |           |
|      |        | 1 = interrupt enabled.       |           |

Table 2.4.12.3 Interrupt Clear-enable Register (ICER)

### 2.4.12.4 Interrupt Set-pending Register (ISPR)

The ISPR forces interrupts into the pending state, and shows the interrupts that are pending.

| Bit  | Symbol  | Description                             | Reset value |
|------|---------|-----------------------------------------|-------------|
| 31:0 | SETPEND | Interrupt set-pending bits.             | 0x0000000   |
|      |         | Write:                                  |             |
|      |         | 0 = no effect                           |             |
|      |         | 1 = changes interrupt state to pending. |             |
|      |         | Read:                                   |             |
|      |         | 0 = interrupt is not pending            |             |
|      |         | 1 = interrupt is pending.               |             |

Table 2.4.12.4 Interrupt Set-pending Register (ISPR)

Note:

Writing 1 to the ISPR bit corresponding to:

- an interrupt that is pending has no effect
- a disabled interrupt sets the state of that interrupt to pending.

## 2.4.12.5 Interrupt Clear-pending Register (ICPR)

The ICPR removes the pending state from interrupts, and shows the interrupts that are pending.

| Bit  | Symbol  | Description                             | Reset value |
|------|---------|-----------------------------------------|-------------|
| 31:0 | CLRPEND | Interrupt clear-pending bits.           | 0x0000000   |
|      |         | Write:                                  |             |
|      |         | 0 = no effect                           |             |
|      |         | 1 = removes pending state an interrupt. |             |
|      |         | Read:                                   |             |
|      |         | 0 = interrupt is not pending            |             |
|      |         | 1 = interrupt is pending.               |             |



Note:

Table 2.4.12.5 Interrupt Clear-pending Register (ICPR)

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

# 2.4.12.6 Interrupt Priority Registers (IPR0~7)

The interrupt priority registers provide an 8-bit priority field for each interrupt, and each register holds four priority fields. This means the number of registers is implementation-defined, and corresponds to the number of implemented interrupts. These registers are only word-accessible. For an implementation that supports 32 interrupts the registers are IPRO-IPR7.

### 2.4.12.6.1 IRQ0 ~ IRQ3 Interrupt Priority Register (IPR0)

| Bit   | Symbol | Description                                                        | Reset |
|-------|--------|--------------------------------------------------------------------|-------|
|       |        |                                                                    | value |
| 31:30 | PRI_3  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 29:24 | -      | Reserved.                                                          | -     |
| 23:22 | PRI_2  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 21:16 | -      | Reserved.                                                          | -     |
| 15:14 | PRI_1  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 13:8  | -      | Reserved.                                                          | -     |
| 7:6   | PRI_0  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 5:0   | -      | Reserved.                                                          | -     |

Table 2.4.12.6.1 IRQ0 ~ IRQ3 Interrupt Priority Register (IPR0)

### 2.4.12.6.2 IRQ4 ~ IRQ7 Interrupt Priority Register (IPR1)

| Bit   | Symbol | Description                                                        | Reset |
|-------|--------|--------------------------------------------------------------------|-------|
|       |        |                                                                    | value |
| 31:30 | PRI_7  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 29:24 | -      | Reserved, should not write value to the none defined bits          | -     |



| 23:22 | PRI_6 | The lower the value, the greater the priority of the corresponding | 0x0 |
|-------|-------|--------------------------------------------------------------------|-----|
|       |       | interrupt.                                                         |     |
| 21:16 | -     | Reserved, should not write value to the none defined bits          | -   |
| 15:14 | PRI_5 | The lower the value, the greater the priority of the corresponding | 0x0 |
|       |       | interrupt.                                                         |     |
| 13:8  | -     | Reserved, should not write value to the none defined bits          | -   |
| 7:6   | PRI_4 | The lower the value, the greater the priority of the corresponding | 0x0 |
|       |       | interrupt.                                                         |     |
| 5:0   | -     | Reserved, should not write value to the none defined bits          | -   |

Table 2.4.12.6.2 IRQ4 ~ IRQ7 Interrupt Priority Register (IPR1)

## 2.4.12.6.3 RQ8 ~ IRQ11 Interrupt Priority Register (IPR2)

| Bit   | Symbol | Description                                                        | Reset |
|-------|--------|--------------------------------------------------------------------|-------|
|       |        |                                                                    | value |
| 31:30 | PRI_11 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 29:24 | -      | Reserved, should not write value to the none defined bits          | -     |
| 23:22 | PRI_10 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 21:16 | -      | Reserved, should not write value to the none defined bits          | -     |
| 15:14 | PRI_9  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 13:8  | -      | Reserved, should not write value to the none defined bits          | -     |
| 7:6   | PRI_8  | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 5:0   | -      | Reserved, should not write value to the none defined bits          | -     |

Table 2.4.12.6.3 IRQ8 ~ IRQ11 Interrupt Priority Register (IPR2)

# 2.4.12.6.4 IRQ12 ~ IRQ15 Interrupt Priority Register (IPR3)

| Bit   | Symbol | Description                                                                   | Reset<br>value |
|-------|--------|-------------------------------------------------------------------------------|----------------|
| 31:30 | PRI_15 | The lower the value, the greater the priority of the corresponding interrupt. | 0x0            |
| 29:24 | -      | Reserved, should not write value to the none defined bits                     | -              |
| 23:22 | PRI_14 | The lower the value, the greater the priority of the corresponding interrupt. | 0x0            |



| 21:16 | -      | Reserved, should not write value to the none defined bits          | -   |
|-------|--------|--------------------------------------------------------------------|-----|
| 15:14 | PRI_13 | The lower the value, the greater the priority of the corresponding | 0x0 |
|       |        | interrupt.                                                         |     |
| 13:8  | -      | Reserved, should not write value to the none defined bits          | -   |
| 7:6   | PRI_12 | The lower the value, the greater the priority of the corresponding | 0x0 |
|       |        | interrupt.                                                         |     |
| 5:0   | -      | Reserved, should not write value to the none defined bits          | -   |

Table 2.4.12.6.4 IRQ12 ~ IRQ15 Interrupt Priority Register (IPR3)

# 2.4.12.6.5 IRQ16 ~ IRQ19 Interrupt Priority Register (IPR4)

| Bit   | Symbol | Description                                                        | Reset |
|-------|--------|--------------------------------------------------------------------|-------|
|       |        |                                                                    | value |
| 31:30 | PRI_19 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 29:24 | -      | Reserved, should not write value to the none defined bits          | -     |
| 23:22 | PRI_18 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 21:16 | -      | Reserved, should not write value to the none defined bits          | -     |
| 15:14 | PRI_17 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 13:8  | -      | Reserved, should not write value to the none defined bits          | -     |
| 7:6   | PRI_16 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 5:0   | -      | Reserved, should not write value to the none defined bits          | -     |

Table 2.4.12.6.5 IRQ16 ~ IRQ19 Interrupt Priority Register (IPR4)

### 2.4.12.6.6 IRQ20 ~ IRQ23 Interrupt Priority Register (IPR5)

| Bit   | Symbol | Description                                                        | Reset |
|-------|--------|--------------------------------------------------------------------|-------|
|       |        |                                                                    | value |
| 31:30 | PRI_23 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 29:24 | -      | Reserved, should not write value to the none defined bits          | -     |
| 23:22 | PRI_22 | The lower the value, the greater the priority of the corresponding | 0x0   |
|       |        | interrupt.                                                         |       |
| 21:16 | -      | Reserved, should not write value to the none defined bits          | -     |



| 15:14 | PRI_21 | The lower the value, the greater the priority of the corresponding | 0x0 |
|-------|--------|--------------------------------------------------------------------|-----|
|       |        | interrupt.                                                         |     |
| 13:8  | -      | Reserved, should not write value to the none defined bits          | -   |
| 7:6   | PRI_20 | The lower the value, the greater the priority of the corresponding | 0x0 |
|       |        | interrupt.                                                         |     |
| 5:0   | -      | Reserved, should not write value to the none defined bits          | -   |

Table 2.4.12.6.6 IRQ20 ~ IRQ23 Interrupt Priority Register (IPR5)

# 2.4.12.6.7 IRQ24 ~ IRQ27 Interrupt Priority Register (IPR6)

| Bit   | Symbol | Description                                                           | Reset |  |
|-------|--------|-----------------------------------------------------------------------|-------|--|
|       |        |                                                                       | value |  |
| 31:30 | PRI_27 | The lower the value, the greater the priority of the corresponding 0x |       |  |
|       |        | interrupts.                                                           |       |  |
| 29:24 | -      | Reserved, should not write value to the none defined bits             | -     |  |
| 23:22 | PRI_26 | The lower the value, the greater the priority of the corresponding    | 0x0   |  |
|       |        | interrupts.                                                           |       |  |
| 21:16 | -      | Reserved, should not write value to the none defined bits             | -     |  |
| 15:14 | PRI_25 | The lower the value, the greater the priority of the corresponding    |       |  |
|       |        | interrupts.                                                           |       |  |
| 13:8  | -      | Reserved, should not write value to the none defined bits             | -     |  |
| 7:6   | PRI_24 | The lower the value, the greater the priority of the corresponding    | 0x0   |  |
|       |        | interrupts.                                                           |       |  |
| 5:0   | -      | Reserved, should not write value to the none defined bits             | -     |  |

Table 2.4.12.6.7 IRQ24 ~ IRQ27 Interrupt Priority Register (IPR6)

### 2.4.12.6.8 IRQ28 ~ IRQ31 Interrupt Priority Register (IPR7)

| Bit   | Symbol | Description                                                                   | Reset<br>value |
|-------|--------|-------------------------------------------------------------------------------|----------------|
| 31:30 | PRI_31 | The lower the value, the greater the priority of the corresponding interrupt. | 0x0            |
| 29:24 | -      | Reserved, should not write value to the none defined bits                     | -              |
| 23:22 | PRI_30 | The lower the value, the greater the priority of the corresponding interrupt. | 0x0            |
| 21:16 | -      | Reserved, should not write value to the none defined bits                     | -              |
| 15:14 | PRI_29 | The lower the value, the greater the priority of the corresponding interrupt. | 0x0            |



| 13:8 | -      | Reserved, should not write value to the none defined bits          | -   |
|------|--------|--------------------------------------------------------------------|-----|
| 7:6  | PRI_28 | The lower the value, the greater the priority of the corresponding | 0x0 |
|      |        | interrupt.                                                         |     |
| 5:0  | -      | Reserved, should not write value to the none defined bits          | -   |

Table 2.4.12.6.8 IRQ28 ~ IRQ31 Interrupt Priority Register (IPR7)

## 2.4.12.7 NVIC usage hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the processor from taking that interrupt.

#### **NVIC** programming hints

Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts. The CMSIS provides the following intrinsic functions for these instructions:

void disable\_irq(void) // Disable Interrupts

void enable\_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

| CMSIS function                                                    | Description                        |
|-------------------------------------------------------------------|------------------------------------|
| void NVIC_EnableIRQ(IRQn_t IRQn)                                  | Enable IRQn                        |
| void NVIC_DisableIRQ(IRQn_t IRQn)                                 | Disable IRQn                       |
| uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn)                         | Return true (1) if IRQn is pending |
| void NVIC_SetPendingIRQ (IRQn_t IRQn)                             | Set IRQn pending                   |
| void NVIC_ClearPendingIRQ (IRQn_t IRQn)                           | Clear IRQn pending status          |
| <pre>void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)</pre> | Set priority for IRQn              |
| uint32_t NVIC_GetPriority (IRQn_t IRQn)                           | Read priority of IRQn              |
| void NVIC_SystemReset (void)                                      | Reset the system                   |

Table 2.4.12.7 NVIC programming hints

The input parameter IRQn is the IRQ number.



# 2.4.12.8 Interrupt sources

| Exception | IRQ    | Vector  | Function    | Flag(s)                      |
|-----------|--------|---------|-------------|------------------------------|
| Number    | Number | Address |             |                              |
| 1-15      | -      | 0x00-   | System      |                              |
|           |        | 0x3C    | exceptions  |                              |
| 16        | 0      | 0x40    | GPIO0 (GP0) | GPIO P0[7:0] interrupt       |
| 17        | 1      | 0x44    | GPIO1 (GP1) | GPIO P1[7:0] interrupt       |
| 18        | 2      | 0x48    | GPIO2 (GP2) | GPIO P2[7:0] interrupt       |
| 19        | 3      | 0x4C    | GPIO3 (GP3) | GPIO P3[0] interrupt         |
| 20        | 4      | 0x50    | -           | -                            |
| 21        | 5      | 0x54    | Capture/PWM | Capture interrupt            |
|           |        |         | (PWM)       | PWM compare interrupt        |
|           |        |         |             | Count overflow               |
| 22        | 6      | 0x58    | ADC         | A/D Converter end of         |
|           |        |         |             | conversion                   |
| 23        | 7      | 0x5C    | -           | -                            |
| 24        | 8      | 0x60    | -           | -                            |
| 25        | 9      | 0x64    | -           | -                            |
| 26        | 10     | 0x68    | -           | -                            |
| 27        | 11     | 0x6C    | -           | -                            |
| 28        | 12     | 0x70    | -           | -                            |
| 29        | 13     | 0x74    | -           | -                            |
| 30        | 14     | 0x78    | -           | -                            |
| 31        | 15     | 0x7C    | UART0       | Rx Line Status (RLS)         |
|           |        |         |             | Transmit Holding Register    |
|           |        |         |             | Empty (THRE)                 |
|           |        |         |             | Rx Data Available (RDA)      |
|           |        |         |             | Character Time-out Indicator |
|           |        |         |             | (CTI)                        |
| 32        | 16     | 0x80    | UART1       | Rx Line Status (RLS)         |
|           |        |         |             | Transmit Holding Register    |
|           |        |         |             | Empty (THRE)                 |
|           |        |         |             | Rx Data Available (RDA)      |
|           |        |         |             | Character Time-out Indicator |
|           |        |         |             | (CTI)                        |
| 33        | 17     | 0x84    | UART2       | Rx Line Status (RLS)         |
|           |        |         |             | Transmit Holding Register    |
|           |        |         |             | Empty (THRE)                 |
|           |        |         |             | Rx Data Available (RDA)      |



|    |    |      |        | Character Time-out Indicator |
|----|----|------|--------|------------------------------|
|    |    |      |        | (CTI)                        |
| 34 | 18 | 0x88 | -      | -                            |
| 35 | 19 | 0x8C | Timer0 | Timer0 Overflow              |
| 36 | 20 | 0x90 | Timer1 | Timer1 Overflow              |
| 37 | 21 | 0x94 | -      | -                            |
| 38 | 22 | 0x98 | -      | -                            |
| 39 | 23 | 0x9C | WDT    | Watchdog Timer interrupt     |
| 40 | 24 | 0xA0 | I2C0   | SI (state change)            |
| 41 | 25 | 0xA4 | -      | -                            |
| 42 | 26 | 0xA8 | SSP0   | Tx FIFO half empty           |
|    |    |      |        | Rx FIFO half full            |
|    |    |      |        | Rx Timeout                   |
|    |    |      |        | Rx Overrun                   |
| 43 | 27 | 0xAC | -      | -                            |
| 44 | 28 | 0xB0 | -      | -                            |
| 45 | 29 | 0xB4 | -      | -                            |
| 46 | 30 | 0xB8 | -      | -                            |
| 47 | 31 | 0xBC | -      | -                            |

Table 2.4.12.8 Interrupt sources



### 2.4.13 **System Control Block (SCB Base address = 0xE000\_E000)**

The SCB provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions.

| Name  | Offset | Access | Description                                      | Reset value |
|-------|--------|--------|--------------------------------------------------|-------------|
| CPUID | 0xD00  | RO     | CPUID Register.                                  | 0x410CC200  |
| ICSR  | 0xD04  | R/W    | Interrupt Control and State Register             | 0x0000000   |
| AIRCR | 0xD0C  | R/W    | Application Interrupt and Reset Control Register | 0xFA050000  |
| SCR   | 0xD10  | R/W    | System Control Register                          | 0x0000000   |
| CCR   | 0xD14  | RO     | Configuration and Control Register               | 0x00000208  |
| SHPR2 | 0xD1C  | R/W    | System Handler Priority Register 2               | 0x0000000   |
| SHPR3 | 0xD20  | R/W    | System Handler Priority Register 3               | 0x0000000   |

Table 2.4.13 System Control Block (SCB )

### 2.4.13.1 The CMSIS mapping of the Cortex-M0 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the array SHP[1] corresponds to the registers SHPR2-SHPR3.

### 2.4.13.2 CPUID Register

The CPUID register contains the processor part number, version, and implementation information. The reset value depends on the variant and patch values of the implemented device.

| Bit   | Symbol      | Description                                               | Reset |  |  |
|-------|-------------|-----------------------------------------------------------|-------|--|--|
|       |             |                                                           | value |  |  |
| 31:24 | Implementer | Implementer code:                                         | 0x41  |  |  |
|       |             | 0x41 corresponds to ARM                                   |       |  |  |
| 23:20 | Variant     | Variant number, the r value in the rnpn product revision  | 0x0   |  |  |
|       |             | identifier:                                               |       |  |  |
|       |             | 0x0 corresponds to revision 0                             |       |  |  |
| 19:16 | Constant    | Constant that defines the architecture of the processor:, | 0xC   |  |  |
|       |             | reads as 0xC corresponds to ARMv6-M architecture          |       |  |  |
| 15:4  | Partno      | Part number of the processor:                             | 0xC20 |  |  |
|       |             | 0xC20 corresponds to Cortex-M0                            |       |  |  |
| 3:0   | Revision    | Revision number, the p value in the rnpn product revision | 0x0   |  |  |
|       |             | identifier:                                               |       |  |  |
|       |             | 0x0 corresponds to patch 0                                |       |  |  |



Table 2.4.14.2 CPUID Register

## 2.4.13.3 Interrupt Control and State Register (ICSR)

The ICSR:

- provides:
  - a set-pending bit for the NMI exception
  - set-pending and clear-pending bits for the PendSV and SysTick exceptions
- indicates:
  - the exception number of the exception being processed
  - whether there are preempted active exceptions
  - the exception number of the highest priority pending exception
  - whether any interrupts are pending.

| Bit   | Symbol     | Description                                                        | Reset |
|-------|------------|--------------------------------------------------------------------|-------|
|       |            |                                                                    | value |
| 31    | NMIPENDSET | NMI set-pending bit.                                               | 0     |
|       |            | Write:                                                             |       |
|       |            | 0 = no effect                                                      |       |
|       |            | 1 = changes NMI exception state to pending.                        |       |
|       |            | Read:                                                              |       |
|       |            | 0 = NMI exception is not pending                                   |       |
|       |            | 1 = NMI exception is pending.                                      |       |
|       |            | Because NMI is the highest-priority exception, normally the        |       |
|       |            | processor enters the NMI exception handler as soon as it           |       |
|       |            | detects a write of 1 to this bit. Entering the handler then clears |       |
|       |            | this bit to 0. This means a read of this bit by the NMI exception  |       |
|       |            | handler returns 1 only if the NMI signal is reasserted while the   |       |
|       |            | processor is executing that handler.                               |       |
| 30:29 | -          | Reserved.                                                          | -     |
| 28    | PENDSVSET  | PendSV set-pending bit.                                            | 0     |
|       |            | Write:                                                             |       |
|       |            | 0 = no effect                                                      |       |
|       |            | 1 = changes PendSV exception state to pending.                     |       |
|       |            | Read:                                                              |       |
|       |            | 0 = PendSV exception is not pending                                |       |
|       |            | 1 = PendSV exception is pending.                                   |       |
|       |            | Writing 1 to this bit is the only way to set the PendSV            |       |
|       |            | exception state to pending.                                        |       |
| 27    | PENDSVCLR  | PendSV clear-pending bit.                                          | -     |
|       |            | Write:                                                             |       |



|       |                                                              | 0 = no effect                                                  |      |
|-------|--------------------------------------------------------------|----------------------------------------------------------------|------|
|       |                                                              |                                                                |      |
|       |                                                              | 1 = removes the pending state from the PendSV exception.       |      |
| •     |                                                              | This bit is WO. On a register read its value is Unknown.       |      |
| 26    | PENDSTSET                                                    | SysTick exception set-pending bit.                             | 0    |
|       |                                                              | Write:                                                         |      |
|       |                                                              | 0 = no effect                                                  |      |
|       |                                                              | 1 = changes SysTick exception state to pending.                |      |
|       |                                                              | Read:                                                          |      |
|       |                                                              | 0 = SysTick exception is not pending                           |      |
|       |                                                              | 1 = SysTick exception is pending.                              |      |
| 25    | PENDSTCLR                                                    | SysTick exception clear-pending bit.                           | -    |
|       |                                                              | Write:                                                         |      |
|       |                                                              | 0 = no effect                                                  |      |
|       |                                                              | 1 = removes the pending state from the SysTick exception.      |      |
|       |                                                              | This bit is WO. On a register read its value is Unknown.       |      |
| 24:23 | -                                                            | Reserved.                                                      | -    |
| 22    | ISRPENDING Interrupt pending flag, excluding NMI and Faults: |                                                                | 0    |
|       |                                                              | 0 = interrupt not pending                                      |      |
|       |                                                              | 1 = interrupt pending.                                         |      |
|       |                                                              | This bit is RO.                                                |      |
| 21:18 | -                                                            | Reserved.                                                      | -    |
| 17:12 | VECTPENDING                                                  | Indicates the exception number of the highest priority pending | 0x00 |
|       |                                                              | enabled exception:                                             |      |
|       |                                                              | 0 = no pending exceptions                                      |      |
|       |                                                              | Nonzero = the exception number of the highest priority         |      |
|       |                                                              | pending enabled exception.                                     |      |
|       |                                                              | Read only.                                                     |      |
| 11:6  | -                                                            | Reserved.                                                      | -    |
| 5:0   | VECTACTIVE                                                   | Contains the active exception number:                          | 0x00 |
|       |                                                              | 0 = Thread mode                                                |      |
|       |                                                              | Nonzero = The exception number of the currently active         |      |
|       |                                                              | exception.                                                     |      |
|       |                                                              | Note: Subtract 16 from this value to obtain the CMSIS IRQ      |      |
|       |                                                              | number that identifies the corresponding bit in the Interrupt  |      |
|       |                                                              | Clear-Enable, Set-Enable, Clear-Pending, Set-pending, and      |      |
|       |                                                              | Priority Register.                                             |      |
|       |                                                              | This is the same value as IPSR bits[5:0].                      |      |
|       |                                                              | Read only.                                                     |      |
|       |                                                              |                                                                |      |

Table 2.4.13.3 Interrupt Control and State Register (ICSR)

When you write to the ICSR, the effect is Unpredictable if you:



- write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
- write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

### 2.4.13.4 Application Interrupt and Reset Control Register (AIRCR)

The AIRCR provides endian status for data accesses and reset control of the system. To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.

| Bit   | Symbol        | Description                                                    | Reset  |
|-------|---------------|----------------------------------------------------------------|--------|
|       |               |                                                                | value  |
| 31:16 | Read:         | Register key:                                                  | 0xFA05 |
|       | Reserved      | Reads as Unknown On writes, write 0x05FA to VECTKEY,           |        |
|       | Write:        | otherwise the write is ignored.                                |        |
|       | VECTKEY       |                                                                |        |
| 15    | ENDIANESS     | Data endianness implemented:                                   | 0      |
|       |               | 0 = Little-endian                                              |        |
|       |               | 1 = Big-endian.                                                |        |
|       |               | This bit is RO.                                                |        |
| 14:3  | -             | Reserved.                                                      | -      |
| 2     | SYSRESETREQ   | System reset request:                                          | 0      |
|       |               | 0 = no effect                                                  |        |
|       |               | 1 = requests a system level reset.                             |        |
|       |               | This bit reads as 0.                                           |        |
| 1     | VECTCLRACTIVE | TIVE Reserved for debug use. This bit reads as 0. When writing |        |
|       |               | to the register you must write 0 to this bit, otherwise        |        |
|       |               | behavior is Unpredictable.                                     |        |
| 0     | -             | Reserved.                                                      | -      |

Table 2.4.13.4 Application Interrupt and Reset Control Register (AIRCR)

## 2.4.13.5 System Control Register (SCR)

The SCR controls features of entry to and exit from low power state.

| Bit  | Symbol | Description | Reset<br>value |
|------|--------|-------------|----------------|
| 31:5 | -      | Reserved.   | -              |



| 4 |             | Cond Event on Danding hits                                       | 0 |
|---|-------------|------------------------------------------------------------------|---|
| 4 | SEVONPEND   | Send Event on Pending bit:                                       | 0 |
|   |             | 0 = only enabled interrupts or events can wake-up the            |   |
|   |             | processor, disabled interrupts are excluded                      |   |
|   |             | 1 = enabled events and all interrupts, including disabled        |   |
|   |             | interrupts, can wake-up the processor.                           |   |
|   |             | When an event or interrupt enters pending state, the event       |   |
| 3 | -           | Reserved.                                                        | - |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
| 2 | SLEEPDEEP   | Controls whether the processor uses sleep or deep sleep as its   | 0 |
|   |             | low power mode:                                                  |   |
|   |             | 0 = sleep                                                        |   |
|   |             | 1 = deep sleep.                                                  |   |
|   |             | Note: This bit is always zero.                                   |   |
|   |             |                                                                  |   |
| 1 | SLEEPONEXIT | Indicates sleep-on-exit when returning from Handler mode to      | 0 |
| - |             | Thread mode:                                                     | U |
|   |             | 0 = do not sleep when returning to Thread mode.                  |   |
|   |             |                                                                  |   |
|   |             | 1 = enter sleep, or deep sleep, on return from an ISR to Thread  |   |
|   |             | mode.                                                            |   |
|   |             | Setting this bit to 1 enables an interrupt driven application to |   |
| 0 | -           | Reserved.                                                        | - |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |
|   |             |                                                                  |   |

Table 2.4.13.5 System Control Register (SCR)

# 2.4.13.6 Configuration and Control Register (CCR)

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex-M0 processor.

| Bit   | Symbol | Description | Reset<br>value |
|-------|--------|-------------|----------------|
| 31:10 | -      | Reserved.   | -              |



| 9   | STKALIGN    | Always reads as one, indicates 8-byte stack alignment on        | 1 |
|-----|-------------|-----------------------------------------------------------------|---|
|     |             | exception entry.                                                |   |
|     |             | On exception entry, the processor uses bit[9] of the stacked    |   |
|     |             | PSR to indicate the stack alignment. On return from the         |   |
|     |             | exception it uses this stacked bit to restore the correct stack |   |
|     |             | alignment.                                                      |   |
| 8:4 | -           | Reserved.                                                       | - |
| 3   | UNALIGN_TRP | Always reads as one, indicates that all unaligned accesses      | 1 |
|     |             | generate a HardFault.                                           |   |
| 2:0 | -           | Reserved.                                                       | - |
|     |             |                                                                 |   |

Table 2.4.13.6 Configuration and Control Register (CCR)

# 2.4.13.7 System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the exception handlers that have configurable priority.

SHPR2-SHPR3 are word accessible.

To access to the system exception priority level using CMSIS, use the following CMSIS functions:

• uint32\_t NVIC\_GetPriority(IRQn\_Type IRQn)

Brite Semiconductor Hong Kong Limited Confidential Page 90

• void NVIC\_SetPriority(IRQn\_Type IRQn, uint32\_t priority)

The input parameter IRQn is the IRQ number.

The system fault handlers, and the priority field and register for each handler are:

| Handler | Field  | Register description               |
|---------|--------|------------------------------------|
| SVCall  | PRI_11 | System Handler Priority Register 2 |
| PendSV  | PRI_14 | System Handler Priority Register 3 |
| SysTick | PRI_15 |                                    |

Table 2.4.13.7 System Handler Priority

Registers Each PRI\_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, and bits[5:0] read as zero and ignore writes.

### 2.4.13.8 System Handler Priority Register 2 (SHPR2)

| Bit   | Symbol | Description                           | Reset value |
|-------|--------|---------------------------------------|-------------|
| 31:24 | PRI_11 | Priority of system handler 11, SVCall | 0x00        |
| 23:0  | -      | Reserved.                             | -           |

Table 2.4.13.8 System Handler Priority Register 2 (SHPR2)



# 2.4.13.9 System Handler Priority Register 3 (SHPR3)

| Bit   | Symbol | Description                                      | Reset value |
|-------|--------|--------------------------------------------------|-------------|
| 31:24 | PRI_15 | Priority of system handler 15, SysTick exception | 0x00        |
| 23:16 | PRI_14 | Priority of system handler 14, PendSV            | 0x00        |
| 15:0  | -      | Reserved.                                        | -           |

Table 2.4.13.9 System Handler Priority Register 3 (SHPR3)

### 2.4.13.10 SCB usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

### 2.4.14 **System timer (SysTick Base address = 0xE000\_E000)**

If implemented, when enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value in the SYST\_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of zero to the SYST\_RVR disables the counter on the next wrap. When the counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading SYST\_CSR clears the COUNTFLAG bit to 0.

Writing to the SYST\_CVR clears the register and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic. Reading the register returns its value at the time it is accessed. **Note:** 

When the processor is halted for debugging the counter does not decrement.

| Name         | Offset | Access | Description                          | Reset value |
|--------------|--------|--------|--------------------------------------|-------------|
| SysTickCTRL  | 0x010  | R/W    | SysTick Control and Status Register. | 0x0000000   |
| SysTickLOAD  | 0x014  | R/W    | SysTick Reload Value Register.       | -           |
| SysTickVAL   | 0x018  | R/W    | SysTick Current Value Register.      | -           |
| SysTickCALIB | 0x01C  | RO     | SysTick Calibration Value Register.  | 0x00000004  |

Table 2.4.14 Register Overview: System timer (SysTick)

# 2.4.14.1 SysTick Control and Status Register (SysTickCTRL)

The SYST\_CSR enables the SysTick features. The register resets to 0x00000000, or 0x00000002 if your device does not implement a reference clock.

| Bit | Symbol | Description | Reset<br>value |
|-----|--------|-------------|----------------|
|     |        |             |                |



| 31:17 | -         | Reserved.                                                   | - |
|-------|-----------|-------------------------------------------------------------|---|
| 16    | COUNTFLAG | Returns 1 if timer counted to 0 since the last read of this | 0 |
|       |           | register.                                                   |   |
| 15:3  | -         | Reserved.                                                   | - |
| 2     | CLKSOURCE | Selects the SysTick timer clock source:                     | 0 |
|       |           | 0 = external reference clock.                               |   |
|       |           | 1 = processor clock.                                        |   |
| 1     | INT       | Enables SysTick exception request:                          | 0 |
|       |           | 0 = counting down to zero does not assert the SysTick       |   |
|       |           | exception request.                                          |   |
| 0     | EN        | Enables the counter:                                        | 0 |
|       |           | 0 = counter disabled.                                       |   |
|       |           | 1 = counter enabled.                                        |   |

Table 2.4.14.1 SysTick Control and Status Register (SysTickCTRL)

## 2.4.14.2 SysTick Reload Value Register (SysTickLOAD)

The SYST\_RVR specifies the start value to load into the SYST\_CVR.

| Bit   | Symbol | Description                                                     | Reset<br>value |
|-------|--------|-----------------------------------------------------------------|----------------|
| 31:24 | -      | Reserved.                                                       | -              |
| 23:0  | RELOAD | Value to load into the SYST_CVR when the counter is enabled and | -              |
|       |        | when it reaches 0.                                              |                |

Table 2.4.14.2 SysTick Reload Value Register (SysTickLOAD

#### Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can program a value of 0, but this has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of

N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

## 2.4.14.3 SysTick Current Value Register (SysTickVAL)

The SYST\_CVR contains the current value of the SysTick counter.

| Bit   | Symbol | Description | Reset<br>value |
|-------|--------|-------------|----------------|
| 31:24 | -      | Reserved.   | -              |



| 23:0 | CURRENT                                                         | Reads return the current value of the SysTick counter. | - |
|------|-----------------------------------------------------------------|--------------------------------------------------------|---|
|      | A write of any value clears the field to 0, and also clears the |                                                        |   |
|      | SYST_CSR.COUNTFLAG bit to 0.                                    |                                                        |   |

Table 2.4.14.3 SysTick Current Value Register (SysTickVAL)

### 2.4.14.4 SysTick Calibration Value Register (SysTickCALIB)

The SYST\_CALIB register indicates the SysTick calibration properties. The reset value of this register is implementation-defined. See the documentation supplied by your device vendor for more information about the meaning of the SYST\_CALIB field values.

| Bit   | Symbol | Description                                                        | Reset    |
|-------|--------|--------------------------------------------------------------------|----------|
|       |        |                                                                    | value    |
| 31    | NOREF  | Reads as one. Indicates that no separate reference clock is        | 0        |
|       |        | provided.                                                          |          |
| 30    | SKEW   | Reads as one. Calibration value for the 10ms inexact timing is not | -        |
|       |        | known because TENMS is not known. This can affect the              |          |
|       |        | suitability of SysTick as a software real time clock.              |          |
| 29:24 | -      | Reserved.                                                          | -        |
| 23:0  | TENMS  | Reads as zero. Indicates calibration value is not known.           | 0x000004 |

Table 2.4.14.4 SysTick Calibration Value Register (SysTickCALIB)



# 2.4.15 User Configuration (Base address = 0x1000\_0000)

| Name   | Offset | Access | Description                         | Default value |
|--------|--------|--------|-------------------------------------|---------------|
| MCUCON | 0x000  | R/W    | MCU Configuration Register.         | OxFF          |
| IOMUX  | 0x004  | R/W    | IO Function Configuration Register. | OxFF          |

Table 2.4.15 Register Overview: User Configuration

# 2.4.15.1 MCU Configuration Register (MCUCON)

| Bit  | Symbol   | Description                                               | Reset |
|------|----------|-----------------------------------------------------------|-------|
|      |          |                                                           | value |
| 31:9 | Reserved | Reserved.                                                 | -     |
| 8    | XTALSEL  | XTAL pad select                                           | 1     |
|      |          | 1: XTAL 1~25MHz is select e                               |       |
|      |          | 0: XTAL 32.768KHz is select                               |       |
| 7:5  | Reserved | Reserved. 7                                               | -     |
| 4    | SWDP     | SWD Protect ( Hardware auto unprotected, when run FMCFUNC | 1     |
|      |          | command 0x6 or 0x7) <sup>1</sup>                          |       |
|      |          | 1: SWD Unprotected <sup>6</sup>                           |       |
|      |          | 0: SWD Protected                                          |       |
| 3    | FMC      | ISP Mapping Enable                                        | 1     |
|      |          | 1: Disable (Boot from main ရှာde)                         |       |
|      |          | 0: Enable (Boot from ISP code)                            |       |
| 2:0  | Reserved | Reserved. U                                               | -     |

Table 2.4.15.1 MCU Configuration Register (MCUCON)

# 2.4.15.2 IO function Configuration Register (IOMUX)

| Bit   | Symbol    | Description Re                                                 |   |
|-------|-----------|----------------------------------------------------------------|---|
| 31:10 | -         | Reserved.                                                      | - |
| 9     | XTALPORT  | XTAL pin location                                              | - |
|       |           | 0: P1.0/P1.1 assign to GPIO function.                          |   |
|       |           | 1: P1.0/P1.1 assign to XTAL function.                          |   |
| 8     | RESETPORT | External reset pin location                                    |   |
|       |           | 0: Enable external reset function. When external reset         |   |
|       |           | function enable, the reset pin will assign to P14 and P14 GPIO |   |
|       |           | function MUX will disable.                                     |   |
|       |           | 1: Disable external reset function.                            |   |



|     |            |                                                     | Ivianuai |
|-----|------------|-----------------------------------------------------|----------|
| 7:4 | SWCLK_PORT | SWDLK pin location                                  | -        |
|     |            | 0xF : SWCLK pin assign to P13 and P13 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0xE : SWCLK pin assign to P20 and P20 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0xD : SWCLK pin assign to P01 and P01 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0xC : SWCLK pin assign to P26 and P26 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0xB : SWCLK pin assign to P23 and P23 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0xA : SWCLK pin assign to P03 and P03 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0x9 : SWCLK pin assign to P05 and P05 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0x8 : SWCLK pin assign to P16 and P16 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0x7 : SWCLK pin assign to P07 and P07 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0x6 : SWCLK pin assign to P30 and P30 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | 0x5 : SWCLK pin assign to P22 and P22 GPIO function |          |
|     |            | select disable.                                     |          |
|     |            | Others : SWCLK function pin disable.                |          |
|     |            |                                                     |          |



| 3:0 | SWDIO_PORT | SWDIO pin location                                                  |
|-----|------------|---------------------------------------------------------------------|
|     |            | 0xF JSWDIO pin assign to P12 and P12 GPIO function                  |
|     |            | seleet disable.                                                     |
|     |            | 0xE <sup>b</sup> SWDIO pin assign to P00 and P00 GPIO function      |
|     |            | select disable.                                                     |
|     |            | 0xD <sup>e</sup> SWDIO pin assign to P15 and P15 GPIO function      |
|     |            | select disable.                                                     |
|     |            | 0xC : SWDIO pin assign to P25 and P25 GPIO function                 |
|     |            | seleqt disable.                                                     |
|     |            | 0xB ¿SWDIO pin assign to P24 and P24 GPIO function                  |
|     |            | select disable.                                                     |
|     |            | 0xA3SWDIO pin assign to P02 and P02 GPIO function                   |
|     |            | select disable.                                                     |
|     |            | 0x9 <sup>1</sup> SWDIO pin assign to P04 and P04 GPIO function      |
|     |            | select disable.                                                     |
|     |            | 0x8 : SWDIO pin assign to P17 and P17 GPIO function                 |
|     |            | select disable.                                                     |
|     |            | 0x7 : SWDIO pin assign to P06 and P06 GPIO function select disable. |
|     |            | 0x6 <sup>-T</sup> SWDIO pin assign to P27 and P27 GPIO function     |
|     |            | seleêt disable.                                                     |
|     |            | 0x5 <pre>bSWDIO pin assign to P21 and P21 GPIO function</pre>       |
|     |            | select disable.                                                     |
|     |            | Others : Disable SWDIO pin function.                                |

Table 2.4.15.2 IO function Configuration Register (IOMU



# 3 RF

# 3.1 Introduction

The HS6207 uses the same 2.4 GHz GFSK RF transceiver with embedded protocol engine. The RF transceiver is designed for operation in the world wide ISM frequency band at 2.400–2.4835 GHz and is very well suited for ultra-low power wireless applications.

The RF transceiver module is configured and operated through the RF transceiver map. This register map is accessed by the MCU through a dedicated on-chip Serial Peripheral interface (SPI) and is available in all power modes of the RF transceiver module. The embedded protocol engine enables data packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Data FIFOs in the RF transceiver module ensure a smooth data flow between the RF transceiver module and the HS6207 MCU.

The rest of this chapter is written in the context of the RF transceiver module as the core and the rest of the HS6207 as external circuitry to this module.



## 3.1.1 Features

Features of the RF include:

- Radio:
  - Worldwide 2.4GHz ISM band operation
  - 126 RF channels
  - Common RX and TX interface
  - GFSK modulation
  - > 500kbps, 1 and 2Mbps air data rate
  - 1MHz non-overlapping channel spacing at 1Mbps
  - 2MHz non-overlapping channel spacing at 2Mbps
- Transmitter:
  - Programmable output power:8 , 5, 4, 0, -6, -12 ,-16 or -43dBm。
- Receiver:
  - Fast AGC for improved dynamic range
  - Integrated channel filters
  - -83dBm sensitivity at 2Mbps
  - -89dBm sensitivity at 1Mbps
  - -89dBm sensitivity at 500kbps
- RF Synthesizer:
  - Fully integrated synthesizer
  - No external loop filer, VCO varactor diode or resonator
  - Accepts low cost ±60ppm 16MHz crystal
- Protocol engine:
  - 1 to 32 bytes dynamic payload length
  - Automatic packet handling
  - Auto packet transaction handling
  - ➢ 6 data pipe for 1:6 star networks
- Power Management:
  - Integrated voltage regulator
  - 1.8 to 3.6V supply range
  - Idle modes with fast start-up times for advanced power management
  - 30μA Standby-I mode,4Ua power down mode
  - Max 2ms start-up from power down mode
  - Max 210us start-up from standby-I mode
- Host Interface:
  - 4-pin hardware SPI
  - Max 10Mbps
  - 3 separate 32 bytes TX and RX FIFOs
  - 5V tolerant IO



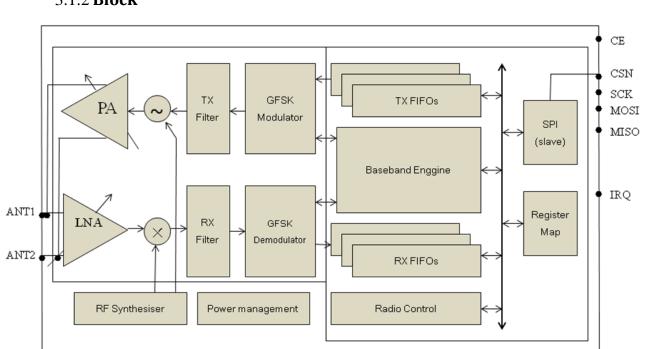



Figure 3.1.2 RF block diagram



# 3.2 Radio Control

This chapter describes the RF radio transceiver's operating modes and the parameters used to control the radio.

The RF has a built-in state machine that controls the transitions between the chip's operating modes. The state machine takes input from user defined register values and internal signals.

# 3.2.1 Operational Modes

You can configure the RF in power down, standby, RX or TX mode. This section describes these modes in detail.

# 3.2.1.1 State diagram

There are three types of distinct states highlighted in the state diagram:

- Recommended operating mode: is a recommended state used during normal operation.
- Possible operating mode: is a possible operating state, but is not used during normal operation.
- Transition state: is a time limited state used during start up of the oscillator and settling of the PLL.

When the VDD reaches 1.8V or higher RF enters the Power on reset state where it remains in reset until entering the Power Down mode.

# 3.2.1.2 Power Down Mode

In power down mode, the RF is disabled using minimize average current consumption. All register values available are maintained and the SPI is kept active, enabling change of configuration and the uploading/down-loading of data registers. Power down mode is entered by setting the PWR\_UP bit in the CONFIG register low.

# 3.2.1.3 Standby Modes

# 3.2.1.3.1 Standby-I mode

By setting the PWR\_UP bit in the CONFIG register to 1, the device enters standby-I mode. Standby-I mode is used to minimize average current consumption while maintaining short start up times. In this mode only part of the crystal oscillator is active. Change to active modes only happens if CE is set high and when CE is set low, the RF returns to standby-I mode from both the TX and RX modes.

# 3.2.1.3.2 Standby-II mode

In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. The RF enters standby-II mode if CE is held high on a PTX device with an empty TX FIFO. If a new packet is uploaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the normal PLL settling delay (210µs). Register values are maintained and the SPI can be activated during both standby modes.

Notice: From Standby-I mode to standby-II mode CE more than 20us



## 3.2.1.4 RX mode

The RX mode is an active mode where the RF radio is used as a receiver. To enter this mode, the chip must have the PWR\_UP bit, PRIM\_RX bit and the CE pin set high.

In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded.

The chip remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features in the baseband protocol engine are enabled, the chip can enter other modes in order to execute the protocol.

In RX mode a Received Power Detector (RPD) signal is available. The RPD register is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is -100 ~ +10dBm. The RPD has about +/-5dBm deviation from the real level.

## 3.2.1.5 TX mode

The TX mode is an active mode for transmitting packets. To enter this mode, the chip must have the PWR\_UP bit set high, PRIM\_RX bit set low, a payload in the TX FIFO and a high pulse on the CE for more than 20µs.

The RF stays in TX mode until it finishes transmitting a packet. If CE = 0, the chip returns to standby-I mode. If CE = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the RF remains in TX mode and transmits the next packet. If the TX FIFO is empty the chip goes into standby-II mode.

# 3.2.1.6 Operational modes configuration

The following (table 3.2.1.6) describes how to configure the operational modes:

| Mode          | PWR_UP<br>register | PRIM_RX<br>register | CE input pin                  | FIFO state                                         |
|---------------|--------------------|---------------------|-------------------------------|----------------------------------------------------|
| RX<br>mode    | 1                  | 1                   | 1                             | -                                                  |
| TX mode       | 1                  | 0                   | 1                             | Data TX FIFO. Will empty all level in<br>TX FIFOsa |
| TX mode       | 1                  | 0                   | Minimum<br>20us high<br>pulse | Data TX FIFO. Will empty one level<br>in TX FIFOsb |
| Standby-<br>2 | 1                  | 0                   | 1                             | TX FIFO empty                                      |
| Standby-<br>1 | 1                  | -                   | 0                             | No ongoing packet transmission                     |
| Power         | 0                  | -                   | -                             | -                                                  |



| Γ | Down |   |   |  |
|---|------|---|---|--|
|   |      | • | • |  |

Table3.2.1.6 the RF main modes

a. If CE is held high all TX FIFOs are emptied and all necessary ACK and possible retransmits are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty when the CE is still high, the chip enters standby-II mode. In this mode the transmission of a packet is started as soon as the CSN is set high after an upload (UL) of a packet to TX FIFO.

b. This operating mode pulses the CE high for at least 20µs. This allows one packet to be transmitted. This is the normal operating mode. After the packet is transmitted, the chip enters standby-1mode.

# 3.2.1.7 Timing Information

The timing information in this section relates to the transitions between modes and the timing for the CE pin. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (max.210µs), as described in Table6.2

| Name      | The chip                                  | Notes | Max.  | Min. | Comments                      |
|-----------|-------------------------------------------|-------|-------|------|-------------------------------|
| Tpd2stby  | d2stby Power down→Standby                 |       | 150us |      | With external clock           |
|           | mode                                      | а     | 2ms   |      | External crystal, Ls<<br>30Mh |
|           |                                           |       | 3ms   |      | External crystal, Ls<<br>60Mh |
|           |                                           |       | 4.5ms |      | External crystal, Ls<<br>90Mh |
| Tstby2a   | Standby mode→TX/RX<br>mode                |       | 210us |      |                               |
| Thce      | Minimum CE high                           |       |       | 20us |                               |
| Tpece2csn | Delay from CE positive<br>edge to CSN low |       |       | 4us  |                               |

Table 3.2.1.7 operational timing of the RF chip

### a. See crystal specifications.

For RF to go from power down mode to TX or RX mode it must first pass through stand-by mode. There must be a delay of Tpd2stby (see Table 6.2) after the RF leaves power down mode before the CE is set high.

**Note:** If VDD is turned off the register value is lost and you must configure chip before entering the TX or RX modes.

### 3.2.2 Air data rate

The air data rate is the modulated signaling rate the chip uses when transmitting and receiving data. It can be 500kbps, 1Mbps or 2Mbps. Using lower air data rate gives better receiver sensitivity than higher air data rate. But, high air data rate gives lower average current consumption and reduced probability of on-air collisions. The air data rate is set by the RF\_DR bit in the RF\_SETUP register. A transmitter and a receiver must be programmed with the same air data rate to communicate with each other.



## 3.2.3 RF channel frequency

The RF channel frequency determines the center of the channel used by the chip. The channel occupies a bandwidth of less than 1MHz at 500kbps and 1Mbps and a bandwidth of less than 2MHz at 2Mbps. The chip can operate on frequencies from 2.400GHz to 2.525GHz. The programming resolution of the RF channel frequency setting is 1MHz.

At 2Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency setting. To ensure non-overlapping channels in 2Mbps mode, the channel spacing must be 2MHz or more. At 1Mbps, the channel bandwidth is the same or lower than the resolution of the RF frequency.

The RF channel frequency is set by the RF\_CH register according to the following formula:

 $F_0 = 2400 + RF_CH [MHz]$ 

You must program a transmitter and a receiver with the same RF channel frequency to communicate with each other.

### **3.2.4 Received Power Detector measurements**

Received Power Detector (RPD), located in register 09, is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is -100  $^{\sim}$  +10dBm.

The RPD can be read out at any time while the chip is in received mode. This offers a snapshot of the current received power level in the channel. The status of RPD is correct when RX mode is enabled and after a wait time of Tstby2a +Tdelay\_AGC= 210us + 20us. The RX gain varies over temperature which means that the RPD value also varies over temperature.

## 3.2.5 PA control

The PA (Power Amplifier) control is used to set the output power from the chip power amplifier. In TX mode PA control has four programmable steps, see Table 6.3.

| SPI RF-SETUP<br>(PA_PWR[3:0]) | RF output power | DC current<br>consumption |
|-------------------------------|-----------------|---------------------------|
| 1000                          | OdBm            | 18.5mA                    |
| 0100                          | -6dBm           | 16mA                      |
| 0010                          | -12dBm          | 14mA                      |
| 0001                          | -16dBm          | 12mA                      |

The PA control is set by the PA\_PWR bits in the RF\_SETUP register.

Table 3.2.5 RF output power setting for the RF

Conditions: VDD = 3.0V, VSS = 0V, TA = 27°C Note: set PA\_PWR[3:0] to 1111 can obtain maximum +6dBm output power



### 3.2.6 RX/TX control

The RX/TX control is set by PRIM\_RX bit in the CONFIG register and sets the RF chip in transmit/receive mode.

## 3.3 Protocol Engine

Protocol engine is a packet based data link layer that features automatic packet assembly and timing, automatic acknowledgement and retransmissions of packets. Protocol engine enables the implementation of ultralow power and high performance communication. The Protocol engine features enable significant improvements of power efficiency for bi-directional and uni-directional systems, without adding complexity on the host controller side.

### 3.3.1 Features

The main features of Protocol engine are:

- > 1 to 32 bytes dynamic payload length
- Automatic packet handling
- Automatic packet transaction handling
  - Auto Acknowledgement with payload
  - Auto retransmit
- ➢ 6 data pipe for 1:6 star networks

### 3.3.2 **Protocol engine overview**

Protocol engine uses self defined protocol for automatic packet handling and timing. During transmit, Protocol engine assembles the packet and clocks the bits in the data packet for transmission. During receive, Protocol engine constantly searches for a valid address in the demodulated signal. When Protocol engine finds a valid address, it processes the rest of the packet and validates it by CRC. If the packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and timing is controlled by protocol engine.

Protocol engine features automatic packet transaction handling for the easy implementation of a reliable bi-directional data link. A protocol engine packet transaction is a packet exchange between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other transceiver acting as the Primary Transmitter (PTX). A protocol engine packet transaction is always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has received an acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the ACK packet enabling a bidirectional data link.

The automatic packet transaction handling works as follows:

1. You begin the transaction by transmitting a data packet from the PTX to the PRX. Protocol engine automatically sets the PTX in receive mode to wait for the ACK packet.

2. If the packet is received by the PRX, Protocol engine automatically assembles and transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode.



3. If the PTX does not receive the ACK packet immediately, Protocol engine automatically retransmits the original data packet after a programmable delay and sets the PTX in receive mode to wait for the ACK packet.

In Protocol engine it is possible to configure parameters such as the maximum number of retransmits and the delay from one transmission to the next retransmission. All automatic handling is done without the involvement of the MCU.

## 3.3.3 Protocol engine packet format

The format of the Protocol engine packet is described in this section. The Protocol engine packet contains a preamble field, address field, packet control field, payload field and a CRC field. Figure 3.3.3 shows the packet format with MSB to the left.

| Preamble 1 byte | Address 4-5 byte | 2byte guard | Packet control field 9 bit | Payload 0-32 bytes | CRC 1-2 bytes |
|-----------------|------------------|-------------|----------------------------|--------------------|---------------|

Figure 3.3.3 A Protocol engine packet with payload (0-32 bytes)

### 3.3.3.1 Preamble

The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.

### 3.3.3.2 Address

This is the address for the receiver. An address ensures that the packet is detected and received by the correct receiver, preventing accidental cross talk between multiple RF systems. You can configure the address field width in the AW register to be 5 bytes or 4 bytes address.

### 3.3.3.3 Guard

Figure 3.3.3 shows the format of the 2 bytes guard packet has better synchronous characteristics.

## 3.3.3.4 Packet Control Field (PCF)

Figure 3.4.4 shows the format of the 9 bit packet control field, MSB to the left.

| Payload length 6bit      | PID 2bit | NO_ACK 1bit |
|--------------------------|----------|-------------|
| Figure 3.4.4 Packet cont |          |             |

The packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and a 1 bit NO ACK flag.

### 3.3.3.4.1 Payload length

This 6 bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes.

Coding: 000000 = 0 byte (only used in empty ACK packets. The 0 length packet also need to be read out use R\_RX\_PAYLOAD with no data following) 100000 = 32 byte, 100001 = Don't care.



This field is only used if the Dynamic Payload Length function is enabled.

## 3.3.3.4.2 PID (Packet identification)

The 2 bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX operation from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC field are used by the PRX operation to determine if a packet is retransmitted or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, the RF transceiver compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

# 3.3.3.4.3 No Acknowledgment flag (NO\_ACK)

The Selective Auto Acknowledgement feature controls the NO\_ACK flag.

This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged.

On the PTX you can set the NO\_ACK flag bit in the Packet Control Field with this command: W\_TX\_PAYLOAD\_NOACK

However, the function must first be enabled in the FEATURE register by setting the EN\_DYN\_ACK bit. When you use this option, the PTX goes directly to standby-I mode after transmitting the packet. The PRX does not transmit an ACK packet when it receives the packet.

# 3.3.3.5 Payload

The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted onair when it is uploaded to the device.

Protocol engine provides two alternatives for handling payload lengths; static and dynamic.

The default is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX\_PW\_Px registers on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX\_FIFO and must equal the value in the RX\_PW\_Px register on the receiver side.

Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means that for a system with different payload lengths it is not necessary to scale the packet length to the longest payload.

With the DPL feature the RF can decode the payload length of the received packet automatically instead of using the RX\_PW\_Px registers. The MCU can read the length of the received payload by using the R\_RX\_PL\_WID command.



**Note:** Always check if the packet width reported is 32 bytes or shorter when using the R\_RX\_PL\_WID command. If its width is longer than 32 bytes then the packet contains errors and must be discarded. Discard the packet by using the Flush\_RX command.

In order to enable DPL the EN\_DPL bit in the FEATURE register must be enabled. In RX mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the DPL\_P0 bit in DYNPD set.

## 3.3.3.6 CRC (Cyclic Redundancy Check)

The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field and Payload.

The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0Xff.

The polynomial for 2 byte CRC is X16 + X12 + X5 + 1. Initial value 0Xffff.

The number of bytes in the CRC is set by the CRCO bit in the CONFIG register. No packet is accepted by protocol engine if the CRC fails.

### 3.3.3.7 Automatic packet assembly

The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC to make a complete packet before it is transmitted.

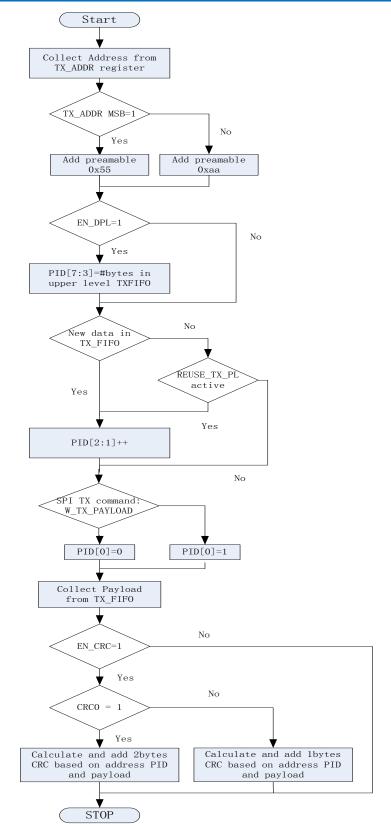



Figure 3.3.3.7 Automatic packet assembly

# 3.3.3.8 Automatic packet disassembly

After the packet is validated, Protocol engine disassembles the packet and loads the payload into the RX FIFO, and asserts the RX\_DR IRQ.

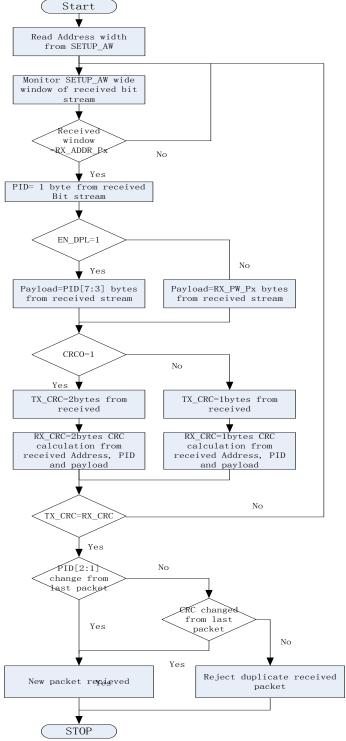



Figure 3.3.3.8 Automatic packet disassembly

# 3.3.4 Automatic packet transaction handling

Protocol engine features two functions for automatic packet transaction handling; auto acknowledgement and auto re-transmit.

# 3.3.4.1 Auto Acknowledgement

Auto Acknowledgment is a function that automatically transmits an ACK packet to the PTX after it has received and validated a packet. The Auto Acknowledgement function reduces the load of the system MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting the EN\_AA register.



**Note:** If the received packet has the NO\_ACK flag set, auto acknowledgement is not executed.

An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the payload by clocking it into the TX FIFO by using the W\_ACK\_PAYLOAD command. The payload is pending in the TX FIFO (PRX) until a new packet is received from the PTX. The RF transceiver can have three ACK packet payloads pending in the TX FIFO (PRX) at the same time.

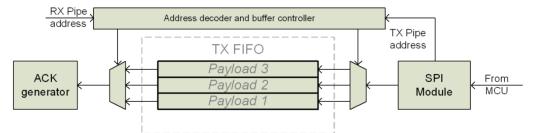



Figure 3.3.4.1 TX FIFO (PRX) with pending payloads

Figure 3.3.4.1 shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From the MCU the payload is clocked in with the W\_ACK\_PAYLOAD command. The address decoder and buffer controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is received, the address decoder and buffer controller are notified with the PTX address. This ensures that the right payload is presented to the ACK generator.

If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in–first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH\_TX command.

In order to enable Auto Acknowledgement with payload the EN\_ACK\_PAY bit in the FEATURE register must be set.

## 3.3.4.2 Auto Retransmission (ART)

The auto retransmission is a function that retransmits a packet if an ACK packet is not received. It is used in an Auto Acknowledgement system on the PTX. When a packet is not acknowledged, you can set the number of times it is allowed to retransmit by setting the ARC bits in the SETUP\_RETR register. PTX enters RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time the PTX is in RX mode is based on the following conditions:

- Auto Retransmit Delay (ARD) has elapsed.
- No address match within 256  $\mu s.$
- $\bullet$  After received packet (CRC correct or not) if address match within 256  $\mu s.$

The RF transceiver asserts the TX\_DS IRQ when the ACK packet is received.

The RF transceiver enters standby-I mode if there is no more un-transmitted data in the TX FIFO and the CE pin is low. If the ACK packet is not received, the RF transceiver goes back to TX mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is received, or the maximum number of retransmits is reached.



Two packet loss counters are incremented each time a packet is lost, ARC\_CNT and PLOS\_CNT in the OBSERVE\_TX register. The ARC\_CNT counts the number of retransmissions for the current transaction. You reset ARC\_CNT by initiating a new transaction. The PLOS\_CNT counts the total number of retransmissions since the last channel change. You reset PLOS\_CNT by writing to the RF\_CH register. It is possible to use the information in the OBSERVE\_TX register to make an overall assessment of the channel quality.

The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX. ARD is set in SETUP\_RETR register in steps of 256µs. A retransmit is made if no ACK packet is received by the PTX.

There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must never be shorter than the sum of the startup time and the time on-air for the ACK packet.

• For 2 Mbps data rate and 5-byte address; 15 byte is maximum ACK packet payload length for ARD=256µs (reset value).

• For 1 Mbps data rate and 5-byte address; 5 byte is maximum ACK packet payload length for ARD=256µs (reset value).

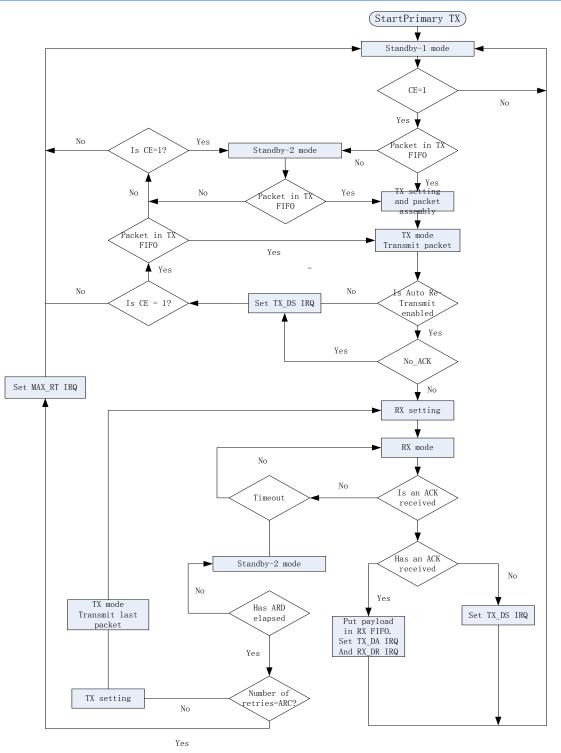
ARD=512µs is long enough for any ACK payload length in 1 or 2 Mbps mode.

| ARD    | ACK packet size (in byte) |
|--------|---------------------------|
| 1536us | All ACK payload sizes     |
| 1280us | <=24                      |
| 1024us | <=16                      |
| 768us  | <=8                       |
| 512us  | Empty ACK with no payload |

• For 500kbps data rate and 5-byte address the following values apply:

Table 3.3.4.2 Maximum ACK payload length for different retransmit delays

As an alternative to Auto Retransmit it is possible to manually set the RF transceiver to retransmit a packet a number of times. This is done by the REUSE\_TX\_PL command. The MCU must initiate each transmission of the packet with a pulse on the CE pin when this command is used.


## 3.3.5 Protocol engine flowcharts

This section contains flowcharts outlining PTX and PRX operation in Protocol engine.

## 3.3.5.1 PTX operation

The flowchart in Figure 3.3.5.1 outlines how a RF transceiver configured as a PTX behaves after entering standby-I mode.







Note: Protocol engine operation is outlined with a dashed square.

Activate PTX mode by setting the CE high. If there is a packet present in the TX FIFO the RF transceiver enters TX mode and transmits the packet. If Auto Retransmit is enabled, the state machine checks if the NO\_ACK flag is set. If it is not set, the RF transceiver enters RX mode to receive an ACK packet. If the received ACK packet is empty, only the TX\_DS IRQ is asserted. If the ACK packet contains a payload, both TX\_DS IRQ and RX\_DR IRQ are asserted simultaneously before the RF transceiver returns to standby-I mode.



If the ACK packet is not received before timeout occurs, the RF transceiver returns to standby-II mode. It stays in standby-II mode until the ARD has elapsed. If the number of retransmits has not reached the ARC, the RF transceiver enters TX mode and transmits the last packet once more.

While executing the Auto Retransmit feature, the number of retransmits can reach the maximum number defined in ARC. If this happens, the RF transceiver asserts the MAX\_RT IRQ and returns to standby-I mode.

If the CE bit in the RFCON register is high and the TX FIFO is empty, the RF transceiver enters Standby-II mode.

## 3.3.5.2 PRX operation

The flowchart in Figure 3.3.5.2 outlines how a RF transceiver configured as a PRX behaves after entering standby-I mode.



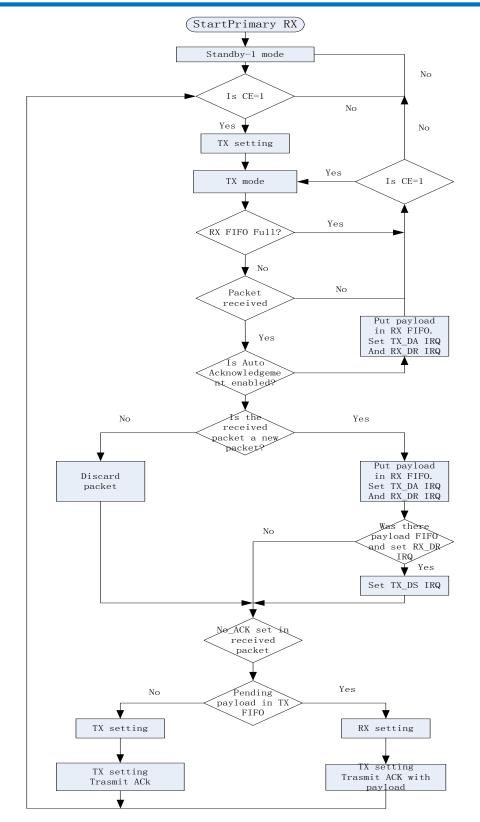



Figure 3.3.5.2 PRX operations in Protocol engine

Note: Protocol engine operation is outlined with a dashed square.

Activate PRX mode by setting the CE bit in the RFCON register high. The RF transceiver enters RX mode and starts searching for packets. If a packet is received and Auto Acknowledgement is enabled, the RF transceiver decides if the packet is new or a copy of a previously received packet. If the packet is new payload is made available in the RX FIFO and the RX\_DR IRQ is asserted. If the last received packet from the transmitter is acknowledged with an ACK packet with payload, the TX\_DS IRQ indicates that the PTX received the ACK packet with payload. If the No\_ACK flag is not set in the received packet, the PRX enters



TX mode. If there is a pending payload in the TX FIFO it is attached to the ACK packet. After the ACK packet is transmitted, the RF transceiver returns to RX mode.

A copy of a previously received packet might be received if the ACK packet is lost. In this case, the PRX discards the received packet and transmits an ACK packet before it returns to RX mode.

### 3.3.6 MultiSlave

MultiSlave is a feature used in RX mode that contains a set of six parallel data pipes with unique addresses. A data pipe is a logical channel in the physical RF channel. Each data pipe has its own physical address (data pipe address) decoding in the RF transceiver.

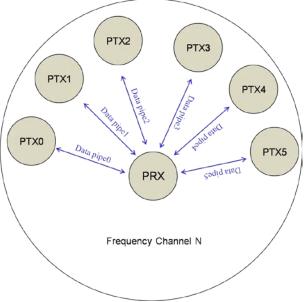



Figure 3.3.6.1 PRX using MultiSlave

The RF transceiver configured as PRX (primary receiver) can receive data addressed to six different data pipes in one frequency channel. Each data pipe has its own unique address and can be configured for individual behavior.

Up to six RF transceivers configured as PTX can communicate with one RF transceiver configured as PRX. All data pipe addresses are searched for simultaneously. Only one data pipe can receive a packet at a time. All data pipes can perform Protocol engine functionality.

The following settings are common to all data pipes:

- CRC enabled/disabled (CRC always enabled when Protocol engine is enabled)
- CRC encoding scheme
- RX address width
- Frequency channel
- Air data rate
- LNA gain

The data pipes are enabled with the bits in the EN\_RXADDR register. By default only data pipe 0 and 1 are enabled. Each data pipe address is configured in the RX\_ADDR\_PX registers.

**Note:** Always ensure that none of the data pipes have the same address.



Each pipe can have up to a 5 byte configurable address. Data pipes 0-5 share the four most significant address bytes. The LSByte must be unique for all six pipes. Figure 3.3.6.2 is an example of how data pipes 0-5 are addressed. Only pipe0 can have up to a 5 byte configurable address, other's pipes have 1bytes configurable address.

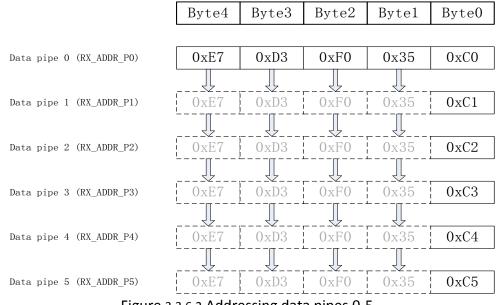
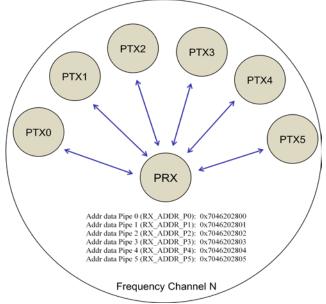
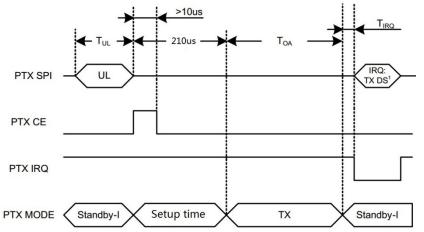



Figure 3.3.6.2 Addressing data pipes 0-5

The PRX, using MultiSlave and Protocol engine, receives packets from more than one PTX. To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet. Figure 3.3.6.3 is an example of an address configuration for the PRX and PTX. On the PRX the RX\_ADDR\_Px, defined as the pipe address, must be unique. On the PTX the TX\_ADDR must be the same as the RX\_ADDR\_P0 and as the pipe address for the designated pipe.





Figure 3.3.6.3Example of data pipe addressing in MultiSlave

Only when a data pipe receives a complete packet can other data pipes begin to receive data. When multiple PTXs are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once.



## 3.3.7 Protocol engine timing

This section describes the timing sequence of Protocol engine and how all modes are initiated and operated. The Protocol engine timing is controlled through the Data and Control interface. The RF transceiver can be set to static modes or autonomous modes where the internal state machine controls the events. Each autonomous mode/sequence ends with a RFIRQ interrupt. All the interrupts are indicated as IRQ events in the timing diagrams.



1 IRQ if No Ack is on.

TIRQ=3us @ 1Mbps, @2Mbps

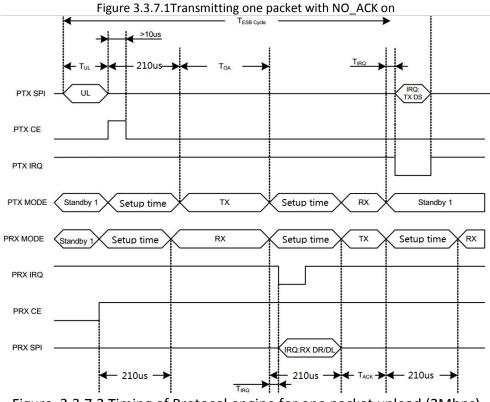



Figure 3.3.7.2 Timing of Protocol engine for one packet upload (2Mbps)

In Figure 3.3.7.2, the transmission and acknowledgement of a packet is shown. The PRX operation activates RX mode (CE=1), and the PTX operation is activated in TX mode (CE=1 for minimum 20µs). After 210µs the transmission starts and finishes after the elapse of TOA.

When the transmission ends the PTX operation automatically switches to RX mode to wait for the ACK packet from the PRX operation. When the PRX operation receives the packet it sets the interrupt for the



host MCU and switches to TX mode to send an ACK. After the PTX operation receives the ACK packet it sets the interrupt to the MCU and clears the packet from the TX FIFO.

In Figure 3.3.7.3, the PTX timing of a packet transmission is shown when the first ACK packet is lost.

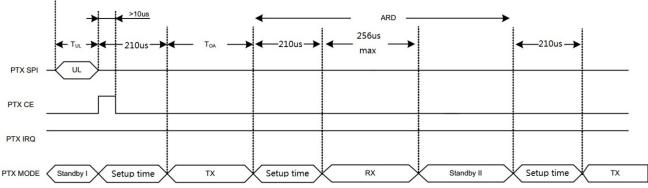
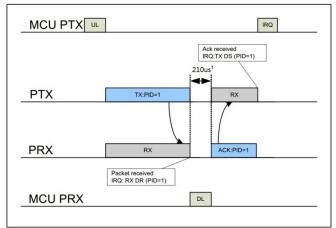



Figure 3.3.7.3Timing of Protocol engine when the first ACK packet is lost (2 Mbps)


## 3.3.8 Protocol engine transaction diagram

This section describes several scenarios for the Protocol engine automatic transaction handling. The call outs in this section's figures indicate the IRQs and other events. For MCU activity the event may be placed at a different timeframe.

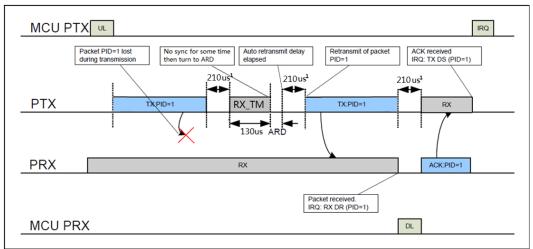
**Note:** The figures in this section indicate the earliest possible download (DL) of the packet to the MCU and the latest possible upload (UL) of payload to the transmitter.

## 3.3.8.1 Single transaction with ACK packet and interrupts

In Figure 3.3.8.1, the basic auto acknowledgement is shown. After the packet is transmitted by the PTX and received by the PRX the ACK packet is transmitted from the PRX to the PTX. The RX\_DR IRQ is asserted after the packet is received by the PRX, whereas the TX\_DS IRQ is asserted when the packet is acknowledged and the ACK packet is received by the PTX.



<sup>1</sup> Radio Turn Around delay


Figure 3.3.8.1 TX/RX cycles with ACK and the according interrupts

## 3.3.8.2 Single transaction with a lost packet

Figure 3.3.8.2 is a scenario where a retransmission is needed due to loss of the first packet transmits. After the packet is transmitted, the PTX enters RX mode to receive the ACK packet. After the first transmission, the PTX waits a specified time (including setup time, RX\_TM and ARD) for the ACK packet, if it is not in the specific time slot the PTX retransmits the packet as shown in Figure 7.15. PTX will turn to RX



mode after 210us setup time when packet is transmitted, after 130us RX timeout (RX\_TM is RX timeout for PTX, it can be set shorter), then PTX turn to ARD (can be set to 0us, 256us, 512us to 3840us).



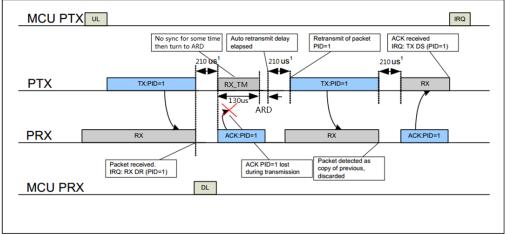

1 Radio Turn Around delay

Figure 3.3.8.2TX/RX cycles with ACK and the according interrupts when the first packet transmit fails

When an address is detected the PTX stays in RX mode until the packet is received. When the retransmitted packet is received by the PRX. The RX\_DR IRQ is asserted and an ACK is transmitted back to the PTX. When the ACK is received by the PTX, the TX\_DS IRQ is asserted.

## 3.3.8.3 Single transaction with a lost ACK packet

Figure 3.3.8.3 is a scenario where a retransmission is needed after a loss of the ACK packet. The corresponding interrupts are also indicated.



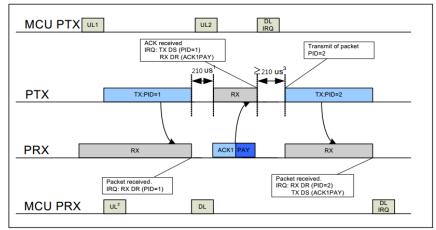

<sup>1</sup> Radio Turn Around delay

Figure 3.3.8.3TX/RX cycles with ACK and the according interrupts when the ACK packet fails

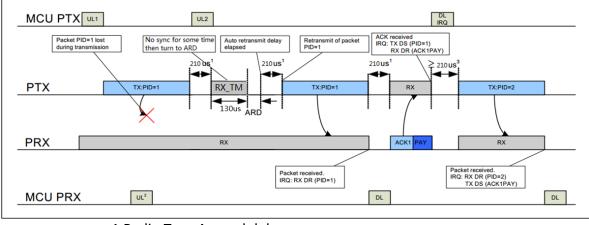
## 3.3.8.4 Single transaction with ACK payload packet

Figure 3.3.8.4 is a scenario of the basic auto acknowledgement with payload. After the packet is transmitted by the PTX and received by the PRX the ACK packet with payload is transmitted from the PRX to the PTX. The RX\_DR IRQ is asserted after the packet is received by the PRX, whereas on the PTX side the TX\_DS IRQ is asserted when the ACK packet is received by the PTX. On the PRX side, the TX\_DS IRQ for the ACK packet payload is asserted after a new packet from PTX is received. The position of the IRQ in Figure 3.3.8.4 shows where the MCU can respond to the interrupt.





1 Radio Turn Around delay


2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 3.3.8.4 TX/RX cycles with ACK Payload and the according interrupts

## 3.3.8.5 Single transaction with ACK payload packet and lost packet

Figure 3.3.8.5 is a scenario where the first packet is lost and a retransmission is needed before the RX\_DR IRQ on the PRX side is asserted. For the PTX both the TX\_DS and RX\_DR IRQ are asserted after the ACK packet is received. After the second packet (PID=2) is received on the PRX side both the RX\_DR (PID=2) and TX\_DS (ACK packet payload) IRQ are asserted.



1 Radio Turn Around delay 2 Uploading payload for Ack Packet

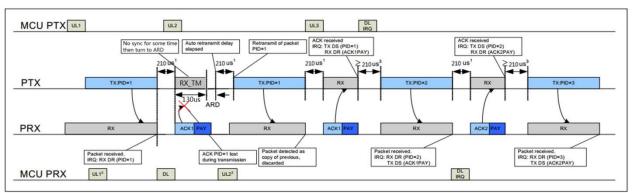

3 Delay defined by MCU on PTX side, >=210us

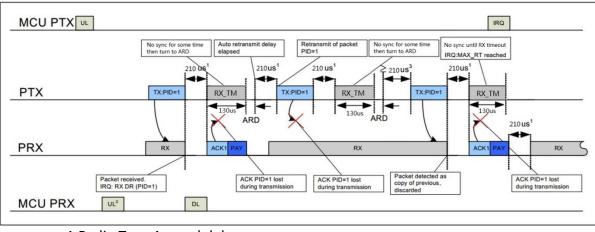
Figure 3.3.8.5 TX/RX cycles and the according interrupts when the packet transmission fails

## 3.3.8.6 Two transactions with ACK payload packet and the first ACK packet lost

Figure 3.3.8.6 the ACK packet is lost and a retransmission is needed before the TX\_DS IRQ is asserted, but the RX\_DR IRQ is asserted immediately. The retransmission of the packet (PID=1) results in a discarded packet. For the PTX both the TX\_DS and RX\_DR IRQ are asserted after the second transmission of ACK, which is received. After the second packet (PID=2) is received on the PRX both the RX\_DR (PID=2) and TX\_DS (ACK1PAY) IRQ is asserted. The callouts explains the different events and interrupts.






1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 3.3.8.6 TX/RX cycles with ACK Payload and the according interrupts when the ACK packet fails

### 3.3.8.7 Two transactions where max retransmissions is reached



1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 3.3.8.7 TX/RX cycles with ACK Payload and the according interrupts when the transmission fails. ARC is set to 2.

MAX\_RT IRQ is asserted if the auto-retransmit counter (ARC\_CNT) exceeds the programmed maximum limit (ARC). In Figure 3.3.8.7, the packet transmission ends with a MAX\_RT IRQ. The payload in TX FIFO is NOT removed and the MCU decides the next step in the protocol. A toggle of the CE bit in the RFCON register starts a new transmitting sequence of the same packet. The payload can be removed from the TX FIFO using the FLUSH\_TX command.

## 3.4 Data and control interface

The data and control interface gives you access to all the features in the RF transceiver. The data and control interface consists of the following six 5Volt tolerant digital signals:

- IRQ (this signal is active low and controlled by three mask-able interrupt sources)
- CE (this signal is active high and used to activate the chip in RX or TX mode)
- CSN (SPI signal)
- SCK (SPI signal)
- MOSI (SPI signal)



### • MISO (SPI signal)

Using 1 byte SPI commands, you can activate the RF data FIFOs or the register map during all modes of operation.

### 3.4.1 Features

- Special SPI commands for quick access to the most frequently used features
- 0-10Mbps 4-wire SPI
- 8 bit command set
- Easily configurable register map
- Full three level FIFO for both TX and RX direction

## 3.4.2 Functional description

The SPI is a standard SPI with a maximum data rate of 10Mbps.

### 3.4.3 SPI operation

This section describes the SPI commands and timing.

## 3.4.3.1 SPI commands

The SPI commands are shown in Table 8.1. Every new command must be started by a high to low transition on CSN.

The STATUS register is serially shifted out on the MISO pin simultaneously to the SPI command word shifting to the MOSI pin.

The serial shifting SPI commands is in the following format:

<Command word: MSBit to LSBit (one byte)>

<Data bytes: LSByte to MSByte, MSBit in each byte first>

See Figure 3.4.3.2.1 and Figure 3.4.3.2.2 for timing information.

| Com<br>mand          | Comman<br>d word<br>(binary) | #Data<br>bytes             | Operation                                                                                                                                    |
|----------------------|------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| R_RES<br>ISTER       | 000A<br>AAAA                 | 1 to 5<br>LSByte<br>first  | Read command and status registers. AAAAA=5 bit register map address                                                                          |
| W_RE<br>SISTE<br>R   | 001A<br>AAAA                 | 1 to 5<br>LSByte<br>first  | Write command and status registers. AAAAA=5 bit register<br>map address<br>Executable in power down or standby modes only.                   |
| R_TX_<br>PAYLO<br>AD | 0110<br>0001                 | 1 to 32<br>LSByte<br>first | Read RX-payload: 1-32 bytes. A read operation always starts<br>at byte 0. Payload is deleted from FIFO after it is read. Used in<br>RX mode. |
| W_TX<br>_PAYL<br>OAD | 1010<br>0000                 | 1 to 32<br>LSByte<br>first | Write TX-payload: 1 – 32 bytes. A write operation always starts at byte 0 used in TX payload.                                                |
| FLUSH                | 1110                         | 0                          | Flush TX FIFO, used in TX mode                                                                                                               |

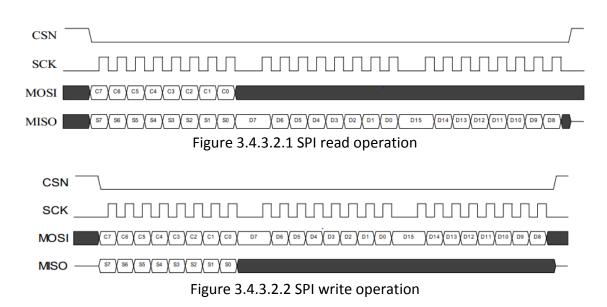


| _TX                                 | 0001         |                            |                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|--------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLUSH<br>_RX                        | 1110<br>0010 | 0                          | Flush RX FIFO, used in RX mode<br>Should not be executed during transmission of acknowledge,<br>that is, acknowledge package will not be completed                                                                                                                                                                                                   |
| REUSE<br>_TX_P<br>L                 | 1110<br>0011 | 0                          | Used for a PTX operation<br>Reuse last transmitted payload. TX payload reuse is active<br>until W_TX_PAYLOAD or FLUSH TX is executed. TX payload<br>reuse must not be activated or deactivated during package<br>transmission.                                                                                                                       |
| R_RX_<br>PL_WI<br>D                 | 0110<br>0000 | 1                          | Read RX payload width for the top R_RX_PAYLOAD in the RX<br>FIFO. Note: Flush RX FIFO if the read value is larger than 32<br>bytes.                                                                                                                                                                                                                  |
| W_AC<br>K_PAY<br>LOAD               | 1010<br>1PPP | 1 to 32<br>LSByte<br>first | Used in RX mode.<br>Write Payload to be transmitted together with ACK packet on<br>PIPE PPP. (PPP valid in the range from 000 to 101). Maximum<br>three ACK packet payloads can be pending. Payloads with<br>same PPP are handled using first in – first out principle. Write<br>payload: 1– 32 bytes. A write operation always starts at byte<br>0. |
| W_TX<br>_PAYL<br>OAD_<br>NO_A<br>CK | 1011<br>0000 | 1 to 32<br>LSByte<br>first | Used in TX mode. Disables AUTOACK on this specific packet specific packet.                                                                                                                                                                                                                                                                           |
| NOP                                 | 1111<br>1111 | 0                          | No Operation. Might be used to read the STATUS register                                                                                                                                                                                                                                                                                              |

Table 3.4.3.1 Command set for the RF transceiver SPI

The W\_REGISTER and R\_REGISTER commands operate on single or multi-byte registers. When accessing multi-byte registers read or write to the MSBit of LSByte first. You can terminate the writing before all bytes in a multi-byte register are written, leaving the unwritten MSByte(s) unchanged. For example, the LSByte of RX\_ADDR\_PO can be modified by writing only one byte to the RX\_ADDR\_PO register. The content of the status register is always read to MISO after a high to low transition on CSN.

**Note:** The 3 bit pipe information in the STATUS register is updated during the IRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an IRQ high to low transition.


## 3.4.3.2 SPI timing

SPI operation and timing is shown in this section. RFmust be in a standby or power down mode before writing to the configuration registers.

In Figure 3.4.3.2.1 to Figure 3.4.3.2.2 the following abbreviations are used:

| Abbreviation | Description                                                            |
|--------------|------------------------------------------------------------------------|
| Cn           | SPI command bit                                                        |
| Sn           | STATUS register bit                                                    |
| Dn           | Data Bit (Note: LSByte to MSByte, MSBit in each byte first)            |
|              | Table 8.2 Abbreviations used in Figure 3.4.3.2.1. to Figure 3.4.3.2.2. |





## 3.4.4 Data FIFO

The data FIFOs store transmitted payloads (TX FIFO) or received payloads that are ready to be clocked out (RX FIFO). The FIFOs are accessible in both PTX mode and PRX mode. The following FIFOs are present in the RF transceiver:

- TX three level, 32 byte FIFO
- RX three level, 32 byte FIFO

Both FIFOs have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payloads for ACK packets to three different PTX devices. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in – first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO using the FLUSH\_TX command.

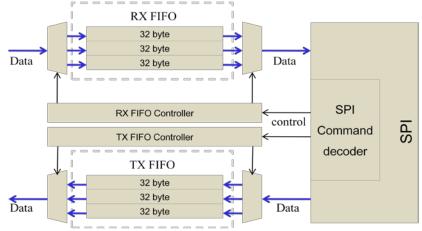
The RX FIFO in PRX can contain payloads from up to three different PTX devices and a TX FIFO in PTX can have up to three payloads stored.

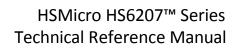
You can write to the TX FIFO using these three commands; W\_TX\_PAYLOAD and W\_TX\_PAYLOAD\_NO\_ACK in PTX mode and W\_ACK\_PAYLOAD in PRX mode. All three commands provide access to the TX\_PLD register.

The RX FIFO can be read by the command R\_RX\_PAYLOAD in PTX and PRX mode. This command provides access to the RX\_PLD register.

The payload in TX FIFO in a PTX is not removed if the MAX\_RT IRQ is asserted.







Figure 3.4.4 FIFO (RX and TX) block diagram

You can read if the TX and RX FIFO are full or empty in the FIFO\_STATUS register.

## 3.4.5 Interrupt

The RF has an active low interrupt (IRQ) pin. The IRQ pin is activated when TX\_DS IRQ, RX\_DR IRQ or MAX\_RT IRQ are set high by the state machine in the STATUS register. The IRQ pin resets when MCU writes '1' to the IRQ source bit in the STATUS register. The IRQ mask in the CONFIG register is used to select the IRQ sources that are allowed to assert the IRQ pin. By setting one of the MASK bits high, the corresponding IRQ source is disabled. By default all IRQ sources are enabled.

**Note:** The 3 bit pipe information in the STATUS register is updated during the IRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an IRQ high to low transition.





## 3.5 Register map

You can configure and control the radio by accessing the register map through the SPI.

### 3.5.1 Register map table

All undefined bits in the table below are redundant. They are read out as '0'.

Note: Addresses 18 to 1B are reserved for test purpose, alteringthem makes the chip malfunction.

| 3.5.1.1 CONFIG (RW) | Address: 00h |
|---------------------|--------------|
|---------------------|--------------|

| Bit 7        | Bit 6          | Bit 5          | Bit 4           | Bit 3  | Bit 2 | Bit 1  | Bit 0       |
|--------------|----------------|----------------|-----------------|--------|-------|--------|-------------|
| Reserve<br>d | MASK_R<br>X_DR | MASK_T<br>X_DS | MASK_M<br>AX_RT | EN_CRC | CRCO  | PWR_UP | PRIM_R<br>X |
| 0            | 0              | 0              | 0               | 1      | 0     | 0      | 0           |
| RW           | RW             | RW             | RW              | RW     | RW    | RW     | RW          |

#### Description of Word

| Bit | Value | Symbol      | Description                                                     |                                                       |  |  |  |
|-----|-------|-------------|-----------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| 7   | 0     |             | Only 0 allowed                                                  |                                                       |  |  |  |
|     |       | Reserved    | 0                                                               | Keep the current value                                |  |  |  |
|     |       |             | 1                                                               | Reset to default values                               |  |  |  |
| 6   | 0     | MASK_RX_DR  | Mask interrupt                                                  | caused by RX_DR                                       |  |  |  |
|     |       |             | 0                                                               | Reflect RX_DR as active low interrupt on the IRQ pin  |  |  |  |
|     |       |             | 1                                                               | Interruptnot reflected on the IRQ pin                 |  |  |  |
| 5   | 0     | MASK_TX_DS  | Mask interrupt                                                  | caused by TX_DS                                       |  |  |  |
|     |       |             | 0                                                               | Reflect TX_DS as active low interrupt on the IRQ pin  |  |  |  |
|     |       |             | 1                                                               | Interrupt not reflected on the IRQpin                 |  |  |  |
| 4   | 0     | MASK_MAX_RT | Mask interrupt caused by MAX_RT                                 |                                                       |  |  |  |
|     |       |             | 0                                                               | Reflect MAX_RT as active low interrupt on the IRQ pin |  |  |  |
|     |       |             | 1                                                               | Interrupt not reflected on the IRQ pin                |  |  |  |
| 3   | 1     | EN_CRC      | Enable CRC. Forced high if one of the bits in the EN_AA is high |                                                       |  |  |  |
|     |       |             | 0                                                               | Disable CRC                                           |  |  |  |
|     |       |             | 1                                                               | Enable CRC                                            |  |  |  |
| 2   | 0     | CRCO        | CRC encoding scheme                                             |                                                       |  |  |  |
|     |       |             | 0                                                               | 1 byte                                                |  |  |  |
|     |       |             | 1                                                               | 2 byte                                                |  |  |  |
| 1   | 0     | PWR_UP      | Power up contr                                                  | ol                                                    |  |  |  |
|     |       |             | 0                                                               | POWER DOWN                                            |  |  |  |
|     |       |             | 1                                                               | POWER UP                                              |  |  |  |
| 0   | 0     | PRIM_RX     | RX/TX control                                                   |                                                       |  |  |  |
|     |       |             | 0                                                               | PTX                                                   |  |  |  |
|     |       |             | 1                                                               | PRX                                                   |  |  |  |
|     |       |             |                                                                 |                                                       |  |  |  |

### 3.5.1.2 EN\_AA (RW) Address: 01h

| Bit 7    | Bit 6 | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0       |
|----------|-------|---------|---------|---------|---------|---------|-------------|
| Reversed |       | ENAA_P5 | ENAA_P4 | ENAA_P3 | ENAA_P2 | ENAA_P1 | ENAA_P<br>0 |
| 0        |       | 1       | 1       | 1       | 1       | 1       | 1           |
| RW       |       | RW      | RW      | RW      | RW      | RW      | RW          |

Description of Word



| Bit | Value | Symbol   | Description                                   |                               |  |  |
|-----|-------|----------|-----------------------------------------------|-------------------------------|--|--|
| 7   | 0     | Reserved | Only 0 allo                                   | wed                           |  |  |
|     |       |          | 0                                             | Keep the current value        |  |  |
|     |       |          | 1                                             | Reset to default values       |  |  |
| 6   | 0     | Reserved | Only 0 allo                                   | wed                           |  |  |
|     |       |          | 0                                             | Keep the current value        |  |  |
|     |       |          | 1                                             | Reset to default values       |  |  |
| 5   | 1     | ENAA_P5  | Enable aut                                    | o acknowledgement data pipe 5 |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |
| 4   | 1     | ENAA_P4  | Enable auto acknowledgement data pipe 4       |                               |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |
| 3   | 1     | ENAA_P3  | AA_P3 Enable auto acknowledgement data pipe 3 |                               |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |
| 2   | 1     | ENAA_P2  | Enable auto acknowledgement data pipe 2       |                               |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |
| 1   | 1     | ENAA_P1  | Enable aut                                    | o acknowledgement data pipe 1 |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |
| 0   | 1     | ENAA_P0  | Enable aut                                    | o acknowledgement data pipe 0 |  |  |
|     |       |          | 0                                             | Disable                       |  |  |
|     |       |          | 1                                             | Enable                        |  |  |

### 3.5.1.3 EN\_RXADDR (RW) Address: 02h

| Bit 7    | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|----------|-------|--------|--------|--------|--------|--------|--------|
| Reversed |       | ERX_P5 | ERX_P4 | ERX_P3 | ERX_P2 | ERX_P1 | ERX_P0 |
| 0        |       | 0      | 0      | 0      | 0      | 1      | 1      |
| RW       |       | RW     | RW     | RW     | RW     | RW     | RW     |

#### Description of Word

|     |       |          | -                  |                         |  |  |  |  |
|-----|-------|----------|--------------------|-------------------------|--|--|--|--|
| Bit | Value | Symbol   | Description        |                         |  |  |  |  |
| 7:6 | 0     | Reserved | Only 0 allow       | Only 0 allowed          |  |  |  |  |
|     |       |          | 0                  | Keep the current value  |  |  |  |  |
|     |       |          | 1                  | Reset to default values |  |  |  |  |
| 5   | 0     | ERX_P5   | Enable data        | pipe 5                  |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |
| 4   | 0     | ERX_P4   | Enable data        | pipe 4                  |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |
| 3   | 0     | ERX_P3   | Enable data        | pipe 3                  |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |
| 2   | 0     | ERX_P2   | Enable data pipe 2 |                         |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |
| 1   | 1     | ERX_P1   | Enable data pipe 1 |                         |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |
| 0   | 1     | ERX_P0   | Enable data        | pipe 0                  |  |  |  |  |
|     |       |          | 0                  | Disable                 |  |  |  |  |
|     |       |          | 1                  | Enable                  |  |  |  |  |

### 3.5.1.4 SETUP\_AW (RW)Address: 03h

|                          | - ( ) |       |       |       |            |               |           |
|--------------------------|-------|-------|-------|-------|------------|---------------|-----------|
| Bit 7                    | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2      | Bit 1         | Bit O     |
| Reserved                 |       |       |       |       |            | SETUP_AW      | /         |
| 0                        |       |       |       |       |            | 2'b11         |           |
| n.com.cn 126 / 141 Relea |       |       |       |       | Release Da | te: 1/27/2015 | Rev: v1.1 |



RW

RW

### Description of Word

| Bit | Value | Symbol   | Description                                            |                         |  |
|-----|-------|----------|--------------------------------------------------------|-------------------------|--|
| 7:2 | 0     | Reserved | Only 0 allowed                                         |                         |  |
|     |       |          | 0                                                      | Keep the current value  |  |
|     |       |          | 1                                                      | Reset to default values |  |
| 1:0 | 2'b11 | SETUP_AW | Setup of Address Widths<br>(common for all data pipes) |                         |  |
|     |       |          | 2'b11                                                  | 5 bytes                 |  |
|     |       |          | 2'b10                                                  | 4 bytes                 |  |
|     |       |          | 2'b01                                                  | Illegal                 |  |
|     |       |          | 2'b00                                                  | Illegal                 |  |

### 3.5.1.5 SETUP\_RETR (RW) Address: 04h

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
| ARD   |       |       |       | ARC   |       |       |       |  |
| 4'b0  | 0     |       |       | 4'b11 |       |       |       |  |
| RW    |       |       |       | RW    |       |       |       |  |

#### Description of Word

| Bit | Value | Symbol | Description  | Description                        |  |  |  |  |
|-----|-------|--------|--------------|------------------------------------|--|--|--|--|
| 7:2 | 4'b0  | ARD    | Auto Retrans | Auto Retransmit Delay              |  |  |  |  |
|     |       |        | 4'hf         | Wait 3840µS                        |  |  |  |  |
|     |       |        |              |                                    |  |  |  |  |
|     |       |        | 4'h1         | Wait 256µS                         |  |  |  |  |
|     |       |        | 4'h0         | Wait 0µS                           |  |  |  |  |
| 3:0 | 4'b11 | ARC    | Auto Retrans | smit Count                         |  |  |  |  |
|     |       |        | 4'hf         | Up to 15 Re-Transmit on fail of AA |  |  |  |  |
|     |       |        |              |                                    |  |  |  |  |
|     |       |        | 4'h1         | Up to 1 Re-Transmit on fail of AA  |  |  |  |  |
|     |       |        | 4'h0         | Re-Transmit disabled               |  |  |  |  |

#### 3.5.1.6 RF\_CH (RW) Address: 05h

| Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| Reg_Rf_ch |       |       |       |       |       |       |       |
| 8'b2      | 8'b2  |       |       |       |       |       |       |
| RW        |       |       |       |       |       |       |       |

#### Description of Word

| Bit | Value | Symbol    | Description                               |
|-----|-------|-----------|-------------------------------------------|
| 8:0 | 2     | Reg_Rf_ch | Sets the frequency channel RF operates on |

### 3.5.1.7 RF\_SETUP (RW) Address: 06h

| Bit 7         | Bit 6         | Bit 5         | Bit 4    | Bit 3          | Bit 2  | Bit 1 | Bit 0 |
|---------------|---------------|---------------|----------|----------------|--------|-------|-------|
| CONT_<br>WAVE | PA_PWR<br>[3] | RF_DR_L<br>OW | Reserved | RF_DR_H<br>IGH | PA_PWR |       |       |
| 0             | 1             | 0             | 0        | 1              | 3'b010 |       |       |
| RW            | RW            | RW            | RW       | RW             | RW     |       |       |

#### Description of Word

| Bit | Value | Symbol   | Description                                   |
|-----|-------|----------|-----------------------------------------------|
| 7   | 0     | CONT_WAV | Enables continuous carrier transmit when high |



|     |        | E         | 0                     |                                                                                  | Disable                   |  |  |
|-----|--------|-----------|-----------------------|----------------------------------------------------------------------------------|---------------------------|--|--|
|     |        |           | 1                     |                                                                                  | Enable                    |  |  |
| 6   | 1      | PA_PWR[3] | PA power select bit 3 | }                                                                                |                           |  |  |
| 5   | 0      | RF DR LO  | See RF DR HIGH for    |                                                                                  |                           |  |  |
|     |        | w         |                       |                                                                                  |                           |  |  |
| 4   | 0      | reserved  | Reserved              | Reserved                                                                         |                           |  |  |
| 3   | 1      | RF_DR_HIG | Select between the h  | Select between the high speed data rates. This bit is donot care if RF DR LOW is |                           |  |  |
|     |        | н         | set.Encoding:         |                                                                                  |                           |  |  |
|     |        |           | [RF_DR_LOW, RF_DF     | R_HIGH]:                                                                         |                           |  |  |
|     |        |           | 11                    |                                                                                  | 500Kbps                   |  |  |
|     |        |           | 10                    |                                                                                  | reserved                  |  |  |
|     |        |           | 01                    |                                                                                  | 2Mbps                     |  |  |
|     |        |           | 00                    |                                                                                  | 1Mbps                     |  |  |
| 2:0 | 3'b010 | PA_PWR[2: | PA power control, PA  | A_PWR[3:0] with pa_vol                                                           | tage of RF_IVGEN in bank1 |  |  |
|     |        | 0]        | PA_PWR[3:0]           | Pa_voltage(bank1                                                                 |                           |  |  |
|     |        |           |                       | of RF_IVGEN)                                                                     |                           |  |  |
|     |        |           | 1111                  | 0                                                                                | Output 8 dbm, 40mA        |  |  |
|     |        |           | 1000                  | 0                                                                                | Output 5 dbm              |  |  |
|     |        |           | 0111                  | 1                                                                                | Output 4 dbm, 25mA        |  |  |
|     |        |           | 0011                  | 0                                                                                | Output 0 dbm, 18.5mA      |  |  |
|     |        |           | 0001                  | 0                                                                                | Output -6 dbm             |  |  |
|     |        |           | 0001                  | 1                                                                                | Output -12 dbm            |  |  |
|     |        |           | 0000                  | 0                                                                                | Output -16 dbm            |  |  |
|     |        |           | 0000                  | 1                                                                                | Output -43 dbm            |  |  |

### 3.5.1.8 STATUS (RW) Address: 07h

| Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3   | Bit 2 | Bit 1 | Bit 0       |
|-------|-------|-------|--------|---------|-------|-------|-------------|
| BANK  | RX_DR | TX_DS | MAX_RT | RX_P_NO |       |       | TX_FUL<br>L |
| 0     | 0     | 0     | 0      | 3'b111  |       |       | 0           |
| R     | RW    | RW    | RW     | R       |       |       | R           |

### Description of Word

| Bit | Value  | Symbol  | Description       | Description                                                                                                                                                            |  |  |  |
|-----|--------|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7   | 0      | BANK    | Register BANK     | Register BANK status                                                                                                                                                   |  |  |  |
|     |        |         | 1                 | Register R/W is to register BANK1                                                                                                                                      |  |  |  |
|     |        |         | 0                 | Register R/W is to register BANKO                                                                                                                                      |  |  |  |
| 6   | 0      | RX_DR   |                   | Data Ready RX FIFO interrupt. Asserted when new data arrives RX FIFO Write 1 to clear bit.                                                                             |  |  |  |
| 5   | 0      | TX_DS   | isactivated, this | Data Sent TX FIFO interrupt. Asserted when packet transmitted on TX. If AUTO_ACK isactivated, this bit is set high only when ACK is received.<br>Write 1 to clear bit. |  |  |  |
| 4   | 0      | MAX_RT  |                   | ber of TX retransmits interrupt, Write 1 to clear bit. If MAX_RT is st be cleared to enable further communication.                                                     |  |  |  |
| 3:1 | 3'b111 | RX_P_NO | Data pipe num     | ber for the payload available for reading from RX_FIFO                                                                                                                 |  |  |  |
|     |        |         | 111               | RX FIFO Empty                                                                                                                                                          |  |  |  |
|     |        |         | 110               | Not Used                                                                                                                                                               |  |  |  |
|     |        |         | 000-101           | Data Pipe Number                                                                                                                                                       |  |  |  |
| 0   | 0      | TX_FULL | TX FIFO full flag |                                                                                                                                                                        |  |  |  |
|     |        |         | 0                 | Available locations in TX FIFO                                                                                                                                         |  |  |  |
|     |        |         | 1                 | TX FIFO full                                                                                                                                                           |  |  |  |

### 3.5.1.9 OBSERVE\_TX (RW) Address: 08h

| Bit 7   | Bit 6 | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 |  |  |
|---------|-------|-------|-------|---------|-------|-------|-------|--|--|
| PLOS_CN | Т     |       |       | ARC_CNT |       |       |       |  |  |
| 4'h0    | 4'h0  |       |       |         | 4'h0  |       |       |  |  |
| R       |       |       |       | R       |       |       |       |  |  |



#### Description of Word

| Deserin |       |          |                                                                                      |
|---------|-------|----------|--------------------------------------------------------------------------------------|
| Bit     | Value | Symbol   | Description                                                                          |
| 7:4     | 4'h0  | PLOS_CNT | Count lost packets. The counter is overflow protected to 15, and discontinues at max |
|         |       |          | until reset. The counter is reset by writing to RF_CH.                               |
| 3:0     | 4'h0  | ARC_CNT  | Count retransmitted packets. The counter is reset when transmission of a new packet  |
|         |       |          | starts.                                                                              |

#### 3.5.1.10 RPD Address: 09h

| Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O |
|-------------|-------|-------|-------|-------|-------|-------|-------|
| sig_dbm_est |       |       |       |       |       |       |       |
| 8'h0        | 8'h0  |       |       |       |       |       |       |
| R           |       |       |       |       |       |       |       |

#### Description of Word

|   | Bit | Value | Symbol      | Description                                                           |         |
|---|-----|-------|-------------|-----------------------------------------------------------------------|---------|
| Ī | 7:0 | 0     | sig_dbm_est | estimated in-band signal level in dBm, should support -100 ~ +10 dBm, |         |
|   |     |       |             | 11000000                                                              | -64 dBm |

#### 3.5.1.11 RX\_ADDR\_P0 (RW) Address: 0Ah

| Bit 39 | Bit 38     | Bit 37 | Bit 36 | Bit 35 | Bit 34 | Bit 33 | Bit 32 |  |  |
|--------|------------|--------|--------|--------|--------|--------|--------|--|--|
|        | RX_ADDR_P0 |        |        |        |        |        |        |  |  |
| 8'h70  |            |        |        |        |        |        |        |  |  |
|        |            |        | R      | W      |        |        |        |  |  |
| Bit 31 | Bit 30     | Bit 29 | Bit 28 | Bit 27 | Bit 26 | Bit 25 | Bit 24 |  |  |
|        |            |        | RX_AD  | DR_P0  |        |        |        |  |  |
|        |            |        | 8'ł    | า41    |        |        |        |  |  |
|        |            |        | R      | W      |        |        |        |  |  |
| Bit 23 | Bit 22     | Bit 21 | Bit 20 | Bit 19 | Bit 18 | Bit 17 | Bit 16 |  |  |
|        |            |        | RX_AD  | DR_P0  |        |        |        |  |  |
|        |            |        | 8'ł    | 188    |        |        |        |  |  |
|        |            |        | R      | W      |        |        |        |  |  |
| Bit 15 | Bit 14     | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  |  |  |
|        |            |        | RX_AD  | DR_P0  |        |        |        |  |  |
|        |            |        | 8'ł    | 20     |        |        |        |  |  |
|        |            |        | R      | W      |        |        |        |  |  |
| Bit 7  | Bit 6      | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit O  |  |  |
|        |            |        | RX_AD  | DR_P0  |        |        |        |  |  |
|        |            |        | 8'ł    | າ46    |        |        |        |  |  |
|        |            |        | R      | W      |        |        |        |  |  |

#### Description of Word

| Bit  | Value         | Symbol     | Description                                                                                                                   |
|------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| 39:0 | 40'7041882046 | RX_ADDR_P0 | Receive address data pipe 0. 5 Bytes maximum length. (LSByte is written first. Write the number of bytes defined by SETUP_AW) |

### 3.5.1.12 RX\_ADDR\_P1 (RW) Address: 0Bh

| Bit 7 | Bit 6      | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|------------|-------|-------|-------|-------|-------|-------|
|       | RX_ADDR_P1 |       |       |       |       |       |       |
|       | 8'Hc2      |       |       |       |       |       |       |



RW

#### Description of Word

| Descrip |       |            |                                                                              |  |  |  |  |  |
|---------|-------|------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Bit     | Value | Symbol     | Description                                                                  |  |  |  |  |  |
| 7:0     | 8'hc2 | RX_ADDR_P1 | Receive address data pipe 2. Only LSB. MSBytes are equal to RX_ADDR_P0[39:8] |  |  |  |  |  |
|         |       |            |                                                                              |  |  |  |  |  |

## 3.5.1.13 RX\_ADDR\_P2 (RW) Address: 0Ch

| Bit 7 | Bit 6      | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|------------|-------|-------|-------|-------|-------|-------|
|       | RX_ADDR_P2 |       |       |       |       |       |       |
|       |            |       | 8'    | Hc3   |       |       |       |
|       | RW         |       |       |       |       |       |       |

#### Description of Word

| Bit | Value | Symbol     | Description                                                                  |
|-----|-------|------------|------------------------------------------------------------------------------|
| 7:0 | 8'hc3 | RX_ADDR_P2 | Receive address data pipe 2. Only LSB. MSBytes are equal to RX_ADDR_P0[39:8] |

#### 3.5.1.14 RX\_ADDR\_P3 (RW) Address: 0Dh

| Bit 7 | Bit 6      | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|------------|-------|-------|-------|-------|-------|-------|
|       | RX_ADDR_P3 |       |       |       |       |       |       |
|       |            |       | 8'I   | Hc4   |       |       |       |
|       | RW         |       |       |       |       |       |       |

#### Description of Word

| Bit | Value | Symbol     | Description                                                                  |
|-----|-------|------------|------------------------------------------------------------------------------|
| 7:0 | 8'hc4 | RX_ADDR_P3 | Receive address data pipe 3. Only LSB. MSBytes are equal to RX_ADDR_P0[39:8] |

### 3.5.1.15 RX\_ADDR\_P4 (RW) Address: 0Eh

| Bit 7 | Bit 6      | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|------------|-------|-------|-------|-------|-------|-------|
|       | RX_ADDR_P4 |       |       |       |       |       |       |
|       |            |       | 8'    | Hc5   |       |       |       |
|       | RW         |       |       |       |       |       |       |

#### Description of Word

| Bit | Value | Symbol     | Description                                                                  |  |  |  |  |  |
|-----|-------|------------|------------------------------------------------------------------------------|--|--|--|--|--|
| 7:0 | 8'hc5 | RX_ADDR_P4 | Receive address data pipe 4. Only LSB. MSBytes are equal to RX_ADDR_P0[39:8] |  |  |  |  |  |

#### 3.5.1.16 RX\_ADDR\_P5 (RW) Address: 0Fh

| Bit 7      | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |  |
|------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| RX_ADDR_P5 |       |       |       |       |       |       |       |  |  |  |
|            | 8'Hc6 |       |       |       |       |       |       |  |  |  |
|            | RW    |       |       |       |       |       |       |  |  |  |

#### Description of Word

| Bit | Value | Symbol         | Description                                                                  |
|-----|-------|----------------|------------------------------------------------------------------------------|
| 7:0 | 8'hc6 | RX_ADDR_<br>P5 | Receive address data pipe 5. Only LSB. MSBytes are equal to RX_ADDR_P0[39:8] |

### 3.5.1.17 TX\_ADDR(RW) Address: 10h

| Bit 39      Bit 38      Bit 37      Bit 36      Bit 35      Bit 34      Bit 33      Bit 32 |
|--------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|



|        | TX_ADDR                                                                                    |        |        |        |        |        |        |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--|--|--|--|
|        | 8'h70                                                                                      |        |        |        |        |        |        |  |  |  |  |
|        | RW                                                                                         |        |        |        |        |        |        |  |  |  |  |
| Bit 31 | Bit 31      Bit 30      Bit 29      Bit 28      Bit 27      Bit 26      Bit 25      Bit 24 |        |        |        |        |        |        |  |  |  |  |
|        | TX_ADDR                                                                                    |        |        |        |        |        |        |  |  |  |  |
|        | 8'h41                                                                                      |        |        |        |        |        |        |  |  |  |  |
|        | RW                                                                                         |        |        |        |        |        |        |  |  |  |  |
| Bit 23 | Bit 22                                                                                     | Bit 21 | Bit 20 | Bit 19 | Bit 18 | Bit 17 | Bit 16 |  |  |  |  |
|        |                                                                                            |        | TX_A   | ADDR   |        |        |        |  |  |  |  |
|        |                                                                                            |        | 8'h    | 188    |        |        |        |  |  |  |  |
|        |                                                                                            |        | R      | W      |        |        |        |  |  |  |  |
| Bit 15 | Bit 14                                                                                     | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  |  |  |  |  |
|        |                                                                                            |        | TX_A   | ADDR   |        |        |        |  |  |  |  |
|        |                                                                                            |        | 8'h    | 20     |        |        |        |  |  |  |  |
|        |                                                                                            |        | R      | W      |        |        |        |  |  |  |  |
| Bit 7  | Bit 6                                                                                      | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |  |  |  |  |
|        |                                                                                            |        | TX_A   | ADDR   |        |        |        |  |  |  |  |
|        |                                                                                            |        | 8'h    | า46    |        |        |        |  |  |  |  |
|        |                                                                                            |        | R      | W      |        |        |        |  |  |  |  |

### Description of Word

| Bit  | Value          | Symbol  | Description                                                                                                                                                                                             |
|------|----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39:0 | 40'h7041882046 | TX_ADDR | Transmit address. Used for a PTX device only. (LSByte is written first)Set<br>RX_ADDR_P0 equal to this address to handle automatic acknowledge if<br>this is a PTX device with Protocol engine enabled. |

### 3.5.1.18 RX\_PW\_P0 (RW) Address: 11h

| Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
|-------|-------|----------|-------|-------|-------|-------|-------|--|
| Res   | erved | RX_PW_PO |       |       |       |       |       |  |
|       | 0     |          | 0     |       |       |       |       |  |
| F     | RW    |          | RW    |       |       |       |       |  |

### Description of Word

| Bit | Value | Symbol   | Description                                                  |                         |  |  |
|-----|-------|----------|--------------------------------------------------------------|-------------------------|--|--|
| 7:6 | 2'b00 | Reserved | Only 0 allowed                                               |                         |  |  |
|     |       |          | 0                                                            | Keep the current value  |  |  |
|     |       |          | 1                                                            | Reset to default values |  |  |
| 5:0 | 0     | RX_PW_P0 | Number of bytes in RX payload in data pipe 0 (1 to 32 bytes) |                         |  |  |
|     |       |          | 32                                                           | 32 bytes                |  |  |
|     |       |          |                                                              |                         |  |  |
|     |       |          | 1                                                            | 1 byte                  |  |  |
|     |       |          | 0                                                            | Pipe not used           |  |  |

### 3.5.1.19 RX\_PW\_P1 (RW) Address: 12h

| Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
|-------|-------|----------|-------|-------|-------|-------|-------|--|
| Res   | erved | RX_PW_P1 |       |       |       |       |       |  |
|       | 0     |          | 0     |       |       |       |       |  |
| RW RW |       |          |       |       |       |       |       |  |



#### Description of Word

| Bit | Value | Symbol   | Description                                                  |                         |  |  |  |
|-----|-------|----------|--------------------------------------------------------------|-------------------------|--|--|--|
| 7:6 | 2'b00 | Reserved | Only 0 allowed                                               |                         |  |  |  |
|     |       |          | 0                                                            | Keep the current value  |  |  |  |
|     |       |          | 1                                                            | Reset to default values |  |  |  |
| 5:0 | 0     | RX_PW_P1 | Number of bytes in RX payload in data pipe 1 (1 to 32 bytes) |                         |  |  |  |
|     |       |          | 32                                                           | 32 bytes                |  |  |  |
|     |       |          |                                                              |                         |  |  |  |
|     |       |          | 1                                                            | 1 byte                  |  |  |  |
|     |       |          | 0                                                            | Pipe not used           |  |  |  |

### 3.5.1.20 RX\_PW\_P2 (RW)

Address: 13h

| Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O |  |
|-------|-------|----------|-------|-------|-------|-------|-------|--|
| Res   | erved | RX_PW_P2 |       |       |       |       |       |  |
|       | 0     |          | 0     |       |       |       |       |  |
| F     | RW    |          | RW    |       |       |       |       |  |

#### Description of Word

| Bit | Value | Symbol   | Description                                                  |                         |  |  |  |
|-----|-------|----------|--------------------------------------------------------------|-------------------------|--|--|--|
| 7:6 | 2'b00 | Reserved | Only 0 allowed                                               |                         |  |  |  |
|     |       |          | 0                                                            | Keep the current value  |  |  |  |
|     |       |          | 1                                                            | Reset to default values |  |  |  |
| 5:0 | 0     | RX_PW_P2 | Number of bytes in RX payload in data pipe 2 (1 to 32 bytes) |                         |  |  |  |
|     |       |          | 32                                                           | 32 bytes                |  |  |  |
|     |       |          |                                                              |                         |  |  |  |
|     |       |          | 1                                                            | 1 byte                  |  |  |  |
|     |       |          | 0                                                            | Pipe not used           |  |  |  |

### 3.5.1.21 RX\_PW\_P3 (RW) Address: 14h

| Bit 7 | Bit 6 | Bit 5    | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O |  |
|-------|-------|----------|-------|-------|-------|-------|-------|--|
| Res   | erved | RX_PW_P3 |       |       |       |       |       |  |
|       | 0     |          | 0     |       |       |       |       |  |
| F     | RW    |          | RW    |       |       |       |       |  |

### Description of Word

| Bit | Value | Symbol   | Description        |                                           |  |  |
|-----|-------|----------|--------------------|-------------------------------------------|--|--|
| 7:6 | 2'b00 | Reserved | Only 0 allowed     |                                           |  |  |
|     |       |          | 0                  | Keep the current value                    |  |  |
|     |       |          | 1                  | Reset to default values                   |  |  |
| 5:0 | 0     | RX_PW_P3 | Number of bytes in | RX payload in data pipe 3 (1 to 32 bytes) |  |  |
|     |       |          | 32                 | 32 bytes                                  |  |  |
|     |       |          |                    |                                           |  |  |
|     |       |          | 1                  | 1 byte                                    |  |  |
|     |       |          | 0                  | Pipe not used                             |  |  |

### 3.5.1.22 RX\_PW\_P4 (RW) Address: 15h

| Bit 7 | Bit 6 | Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0 |  |  |  |  |  |  |  |
|-------|-------|--------------------------------|--|--|--|--|--|--|--|
| Res   | erved | RX_PW_P4                       |  |  |  |  |  |  |  |
|       | 0     | 0                              |  |  |  |  |  |  |  |
| F     | RW    | RW                             |  |  |  |  |  |  |  |

#### Description of Word

| Bit | Value | Symbol   |                | Description            |
|-----|-------|----------|----------------|------------------------|
| 7:6 | 2'b00 | Reserved | Only 0 allowed |                        |
|     |       |          | 0              | Keep the current value |



|     |   |          | 1                    | Reset to default values                  |
|-----|---|----------|----------------------|------------------------------------------|
| 5:0 | 0 | RX_PW_P4 | Number of bytes in F | X payload in data pipe 4 (1 to 32 bytes) |
|     |   |          | 32                   | 32 bytes                                 |
|     |   |          |                      |                                          |
|     |   |          | 1                    | 1 byte                                   |
|     |   |          | 0                    | Pipe not used                            |

### 3.5.1.23 RX\_PW\_P5 (RW) Address: 16h

| Bit 7 | Bit 6 | Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |  |  |  |  |  |  |  |
|-------|-------|-------------------------------------|--|--|--|--|--|--|--|
| Res   | erved | RX_PW_P4                            |  |  |  |  |  |  |  |
|       | 0     | 0                                   |  |  |  |  |  |  |  |
| F     | RW    | RW                                  |  |  |  |  |  |  |  |

### Description of Word

| Bit | Value | Symbol   |                    | Description                                 |
|-----|-------|----------|--------------------|---------------------------------------------|
| 7:6 | 2'b00 | Reserved | Only 0 allowed     |                                             |
|     |       |          | 0                  | Keep the current value                      |
|     |       |          | 1                  | Reset to default values                     |
| 5:0 | 0     | RX_PW_P5 | Number of bytes in | n RX payload in data pipe 5 (1 to 32 bytes) |
|     |       |          | 32                 | 32 bytes                                    |
|     |       |          |                    |                                             |
|     |       |          | 1                  | 1 byte                                      |
|     |       |          | 0                  | Pipe not used                               |

### 3.5.1.24 FIFO\_STATUS (RW) Address: 17h

| Bit 7    | Bit 6           | Bit 5   | Bit 4        | Bit 3 | Bit 2 | Bit 1   | Bit O        |
|----------|-----------------|---------|--------------|-------|-------|---------|--------------|
| Reserved | TX_REU<br>SE_PL | TX_FULL | TX_EMPT<br>Y | Rese  | erved | RX_FULL | RX_EM<br>PTY |
| 0        | 0               | 0       | 1            |       | 0     | 0       | 1            |
| R        | R               | R       | R            |       | R     | R       | R            |

#### Description of Word

| Bit | Value | Symbol      |                     | Description                    |
|-----|-------|-------------|---------------------|--------------------------------|
| 7   | 0     | Reserved    | Only '0' allowed    |                                |
|     |       |             | 0                   | Keep the current value         |
|     |       |             | 1                   | Reset to default values        |
| 6   | 0     | TX_REUSE_PL | TX REUSE flag.      |                                |
|     |       |             | 1                   | Tx data reused                 |
|     |       |             | 0                   | Tx data not reused             |
| 5   | 0     | TX_FULL     | TX FIFO full flag.  |                                |
|     |       |             | 1                   | TX FIFO full                   |
|     |       |             | 0                   | Available locations in TX FIFO |
| 4   | 1     | TX_EMPTY    | TX FIFO empty flag. |                                |
|     |       |             | 1                   | TX FIFO empty                  |
|     |       |             | 0                   | Data in TX FIFO                |
| 3:2 | 2'b00 | Reserved    | Only '00' allowed   |                                |
|     |       |             | 0                   | Keep the current value         |
|     |       |             | 1                   | Reset to default values        |
| 1   | 0     | RX_FULL     | RX FIFO full flag.  |                                |
|     |       |             | 1                   | RX FIFO full                   |
|     |       |             | 0                   | Available locations in RX FIFO |
| 0   | 1     | RX_EMPTY    | RX FIFO empty flag. |                                |
|     |       |             | 1                   | RX FIFO empty                  |
|     |       |             | 0                   | Data in RX FIFO                |

### 3.5.1.25 DYNPD (RW) Address: 1Ch

|  |  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--|--|-------|-------|-------|-------|-------|-------|-------|-------|
|--|--|-------|-------|-------|-------|-------|-------|-------|-------|



| Reserved | DPL_P5 | DPL_P4 | DPL_P3 | DPL_P2 | DPL_P1 | DPL_P<br>0 |
|----------|--------|--------|--------|--------|--------|------------|
| 0        | 0      | 0      | 0      | 0      | 0      | 0          |
| RW       | RW     | RW     | RW     | RW     | RW     | RW         |

#### Description of Word

| Bit | Value | Symbol   | Description                                                  |                                                              |  |  |
|-----|-------|----------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|
| 7:6 | 2'b00 | Reserved | Only 0 allowed                                               |                                                              |  |  |
|     |       |          | 0                                                            | Keep the current value                                       |  |  |
|     |       |          | 1                                                            | Reset to default values                                      |  |  |
| 5   | 0     | DPL_P5   | Enable dynamic pa                                            | Enable dynamic payload length data pipe 5. (Requires EN_DPL) |  |  |
| 4   | 0     | DPL_P4   | Enable dynamic payload length data pipe 4. (Requires EN_DPL) |                                                              |  |  |
| 3   | 0     | DPL_P3   | Enable dynamic payload length data pipe 3. (Requires EN_DPL) |                                                              |  |  |
| 2   | 0     | DPL_P2   | Enable dynamic pa                                            | Enable dynamic payload length data pipe 2. (Requires EN_DPL) |  |  |
| 1   | 0     | DPL_P1   | Enable dynamic payload length data pipe 1. (Requires EN_DPL) |                                                              |  |  |
| 0   | 0     | DPL_P0   | Enable dynamic pa                                            | yload length data pipe 0. (Requires EN_DPL)                  |  |  |

### 3.5.1.26 FEATURE (RW) Address: 1Dh

| Bit 7 | Bit 6 | Bit 2    | Bit 1  | Bit 0          |                |    |    |
|-------|-------|----------|--------|----------------|----------------|----|----|
|       |       | Reserved | EN_DPL | EN_ACK<br>_PAY | EN_DYN<br>_ACK |    |    |
|       |       | 0        | 0      | 0              |                |    |    |
|       |       | RW       |        |                | RW             | RW | RW |

### Description of Word

| Bit | Value | Symbol     | Description          |                                |  |  |  |
|-----|-------|------------|----------------------|--------------------------------|--|--|--|
| 7:3 | 2'b00 | Reserved   | Only 0 allowed       |                                |  |  |  |
|     |       |            | 0                    | Keep the current value         |  |  |  |
|     |       |            | 1                    | Reset to default values        |  |  |  |
| 2   | 0     | EN_DPL     | Enables Dynamic Pay  | Enables Dynamic Payload Length |  |  |  |
| 1   | 0     | EN_ACK_PAY | Enables Payload with | Enables Payload with ACK       |  |  |  |
| 0   | 0     | EN_DYN_ACK | Enables the W_TX_P   | AYLOAD_NOACK command           |  |  |  |

## 3.5.1.27 SETUP\_VALUE (RW) Address: 1Eh

| Bit 39       | Bit 39      Bit 38      Bit 37      Bit 36      Bit 35      Bit 34      Bit 33      Bit 32 |        |          |        |        |        |        |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------|--------|----------|--------|--------|--------|--------|--|--|--|--|
| REG_LNA_WAIT |                                                                                            |        |          |        |        |        |        |  |  |  |  |
| 8'h00        |                                                                                            |        |          |        |        |        |        |  |  |  |  |
|              | RW                                                                                         |        |          |        |        |        |        |  |  |  |  |
| Bit 31       | Bit 30                                                                                     | Bit 29 | Bit 28   | Bit 27 | Bit 26 | Bit 25 | Bit24  |  |  |  |  |
|              |                                                                                            |        | REG_MB   | G_WAIT |        |        |        |  |  |  |  |
|              |                                                                                            |        | 8'h:     | 10     |        |        |        |  |  |  |  |
|              |                                                                                            |        | RV       | V      |        |        |        |  |  |  |  |
| Bit 23       | Bit 22                                                                                     | Bit 21 | Bit 20   | Bit 19 | Bit 18 | Bit 17 | Bit 16 |  |  |  |  |
|              |                                                                                            |        | RX_TM    | _CNT   |        |        |        |  |  |  |  |
|              |                                                                                            |        | 8'h8     | 80     |        |        |        |  |  |  |  |
|              |                                                                                            |        | RV       | V      |        |        |        |  |  |  |  |
| Bit 15       | Bit 14                                                                                     | Bit 13 | Bit 12   | Bit 11 | Bit 10 | Bit 9  | Bit 8  |  |  |  |  |
|              |                                                                                            |        | TX_SETUP | VALUE  |        |        |        |  |  |  |  |
|              | 8'h32                                                                                      |        |          |        |        |        |        |  |  |  |  |
|              |                                                                                            |        | RV       | V      |        |        |        |  |  |  |  |



| Bit 7          | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |  |
|----------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| RX_SETUP_VALUE |       |       |       |       |       |       |       |  |  |  |
| 8'h28          |       |       |       |       |       |       |       |  |  |  |
|                | RW    |       |       |       |       |       |       |  |  |  |

#### Description of Word

| Bit   | Value | Symbol       |                    | Description                       |
|-------|-------|--------------|--------------------|-----------------------------------|
| 39:32 | 8'h00 | REG_LNA_WAIT | Lna wait counter   |                                   |
|       |       |              | 8'hff              | 255 cycle                         |
|       |       |              |                    |                                   |
|       |       |              | 1                  | 1 cycle                           |
|       |       |              | 0                  | 0 cycle                           |
| 31:24 | 8'h10 | REG_MBG_WAI  | Main bandgap wait  | counter                           |
|       |       | Т            | 8'hff              | 255us                             |
|       |       |              |                    |                                   |
|       |       |              | 1                  | 1 us                              |
|       |       |              | 0                  | 0 us                              |
| 23:16 | 8'h80 | RX_TM_CNT    | Rx timeout counter |                                   |
|       |       |              | 8'hff              | 255us                             |
|       |       |              |                    |                                   |
|       |       |              | 1                  | 1 us                              |
|       |       |              | 0                  | 0 us                              |
| 15:8  | 8'h32 | TX_SETUP_VAL | TX_SETUP time, the | e time between Standby to TX mode |
|       |       | UE           |                    |                                   |
|       |       |              | 8'hff              | 255us                             |
|       |       |              |                    |                                   |
|       |       |              | 1                  | 1 us                              |
|       |       |              | 0                  | 0 us                              |
| 7:0   | 8'h28 | RX_SETUP_VAL | RX_SETUP time, the | e time between Standby to RX mode |
|       |       | UE           | 8'hff              | 255us                             |
|       |       |              |                    |                                   |
|       |       |              | 1                  | 1 us                              |
|       |       |              | 0                  | 0 us                              |

3.5.1.28 PRE\_GURD (RW)

Address: 1Fh

|        |          |                |        | -       |        |       |       |  |  |  |  |
|--------|----------|----------------|--------|---------|--------|-------|-------|--|--|--|--|
| Bit 15 | Bit 14   | Bit 13         | Bit 12 | Bit 11  | Bit 10 | Bit 9 | Bit 8 |  |  |  |  |
| CE_REG |          | SPARE_REG[6:0] |        |         |        |       |       |  |  |  |  |
| 0      |          | 0              |        |         |        |       |       |  |  |  |  |
|        |          |                |        |         |        |       |       |  |  |  |  |
| Bit 7  | Bit 6    | Bit 5          | Bit 4  | Bit 3   | Bit 2  | Bit 1 | Bit O |  |  |  |  |
|        | TAIL_CTL |                | GRD_EN | GRD_CNT |        |       |       |  |  |  |  |
| 1      |          |                |        | 4'h2    |        |       |       |  |  |  |  |
| RW RW  |          |                |        | RW      |        |       |       |  |  |  |  |



### Description of Word

| Bit  | Value | Symbol    | Description                                                                           |                          |  |  |  |  |
|------|-------|-----------|---------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| 15   | 0     | CE_REG    | CE=CE_PAD&(~CE_REG), when CE pad connected to power, CE_REG can be used to control CE |                          |  |  |  |  |
| 14:8 | 0     | SPARE_REG | Reserved register                                                                     | r                        |  |  |  |  |
| 7:5  | 1     | TAIL_CTL  | Number of repea                                                                       | at bit after the CRC     |  |  |  |  |
|      |       |           | 7                                                                                     | 7 repeat tail            |  |  |  |  |
|      |       |           |                                                                                       |                          |  |  |  |  |
|      |       |           | 1                                                                                     | 1 repeat tail            |  |  |  |  |
|      |       |           | 0                                                                                     | 0 No repeat tail         |  |  |  |  |
| 4    | 1     | GRD_EN    | Pre-Guard enable                                                                      | e                        |  |  |  |  |
| 3:0  | 4'h2  | GRD_CNT   | Number of Pre-G                                                                       | uard bit before preamble |  |  |  |  |
|      |       |           | 4'hf                                                                                  | 16 bit pre_guard         |  |  |  |  |
|      |       |           |                                                                                       |                          |  |  |  |  |
|      |       |           | 1                                                                                     | 2 bit pre_guard          |  |  |  |  |
|      |       |           | 0                                                                                     | 1 bit pre_guard          |  |  |  |  |



## **4** Electrical Characteristics

## 4.1.1 Absolute Maximum Rating

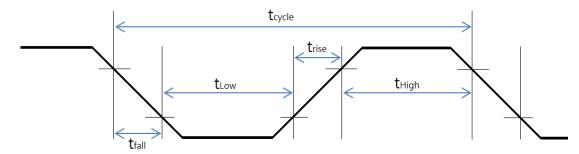
| SYMBOL                | PARAMETER | MIN.    | MAX.    | UNIT |
|-----------------------|-----------|---------|---------|------|
| Supply Voltage        | VDD-VSS   | -0.3    | +3.6    | V    |
| Input Voltage         | VIN       | VSS-0.3 | VDD+0.3 | V    |
| Oscillator Frequency  | 1/TCLCL   | 2       | 25      | MHz  |
| Operating Temperature | ТА        | -40     | +85     | °C   |
| Storage Temperature   | TST       | -40     | +125    | °C   |

Table 8.1.1 Absolute Maximum Rating

## 4.1.2 **DC Electrical Characteristics**

#### SYM. **SPECIFICATION** PARAMETER **TEST CONDITIONS** MIN. TYP. MAX. UNIT **Operation Voltage** VDD 2.3 3.6 V 2.3 Analog Operation Voltage AVDD 3.6 V \_ Input High Voltage P0/1/2/3 VIH 2.1 VDD + V VDD=3.3V \_ 0.2 Input Low Voltage P0/1/2/3 VIL 0.9 V -0.2 VDD=3.3V V Input High Voltage XTAL VIHX 2.1 VDD + VDD=3.3V \_ 0.2 Input Low Voltage XTAL VILX -0.2 0.9 V VDD=3.3V 2.0 VDD + Input High Voltage RESET (Schmitt VIHR V VDD=3.3V input) 0.2 Input Low Voltage RESET (Schmitt VIHR -0.2 1.0 V VDD=3.3V \_ input) Sink current P0/1/2/3 ISK 10 mΑ VDD=3.3V \_ \_ (Quasi-bidirectional and push-pull Source current P0/1/2/3 ISRQ 200 uA VDD=3.3V, Vo=2.4V \_ \_ (Quasi-bidirectional Mode) Source current P0/1/2/3 (Push-pull ISRP 5 VDD=3.3V, Vo=2.7V mΑ Mode) Reset Voltage of POR and LVR VPOR \_ 1.9 V VDD=3.3V \_

#### (Measurements condition: VDD=3.3V, TA=+25°C)


Table 8.2.1 DC Electrical Characteristics



| MCU normal mode       |            |         |  |  |  |  |  |
|-----------------------|------------|---------|--|--|--|--|--|
| MCU                   | RF         | Current |  |  |  |  |  |
| @IRC 22MHz,           | tx@8dBm    | 51 mA   |  |  |  |  |  |
| VDD=3.3V,             | rx         | 31 mA   |  |  |  |  |  |
| enable all IP         | standby_1  | 12 mA   |  |  |  |  |  |
|                       | power_down | 12 mA   |  |  |  |  |  |
| @IRC 22MHz,           | tx@8dBm    | 49 mA   |  |  |  |  |  |
| VDD=3.3V,             | rx         | 29 mA   |  |  |  |  |  |
| disable all APB clock | standby_1  | 10 mA   |  |  |  |  |  |
|                       | power_down | 10 mA   |  |  |  |  |  |
| @IRC 12MHz,           | tx@8dBm    | 47 mA   |  |  |  |  |  |
| VDD=3.3V,             | rx         | 26 mA   |  |  |  |  |  |
| enable all IP         | standby_1  | 7 mA    |  |  |  |  |  |
|                       | power_down | 7 mA    |  |  |  |  |  |
| @IRC 12MHz,           | tx@8dBm    | 46mA    |  |  |  |  |  |
| VDD=3.3V,             | rx         | 25mA    |  |  |  |  |  |
| disable all APB clock | standby_1  | 6mA     |  |  |  |  |  |
|                       | power_down | 6mA     |  |  |  |  |  |
| @IRC 2MHz,            | tx@8dBm    | 43 mA   |  |  |  |  |  |
| VDD=3.3V,             | rx         | 21 mA   |  |  |  |  |  |
| enable all IP         | standby_1  | 2 mA    |  |  |  |  |  |
|                       | power_down | 2 mA    |  |  |  |  |  |
| @IRC 2MHz,            | tx@8dBm    | 43 mA   |  |  |  |  |  |
| VDD=3.3V,             | rx         | 21 mA   |  |  |  |  |  |
| disable all APB clock | standby_1  | 2 mA    |  |  |  |  |  |
|                       | power_down | 2mA     |  |  |  |  |  |
| MCU sleep mode        |            |         |  |  |  |  |  |
| WFI@IRC 10kHz,        | tx@8dBm    | 41 mA   |  |  |  |  |  |
| VDD=3.3V,             |            |         |  |  |  |  |  |
| disable all APB clock |            |         |  |  |  |  |  |
| WFI@IRC 10kHz,        | rx         | 20 mA   |  |  |  |  |  |
| VDD=3.3V,             |            |         |  |  |  |  |  |
| disable all APB clock |            |         |  |  |  |  |  |
| WFI@IRC 10kHz,        | standby_1  | 184uA   |  |  |  |  |  |
| VDD=3.3V,             |            |         |  |  |  |  |  |
| disable all APB clock |            |         |  |  |  |  |  |
| WFI@IRC 10kHz,        | power_down | 160 uA  |  |  |  |  |  |
| VDD=3.3V,             |            |         |  |  |  |  |  |
| disable all APB clock |            |         |  |  |  |  |  |
| MCU deep sleep mode   |            |         |  |  |  |  |  |
| Deep power down       | power_down | 16uA    |  |  |  |  |  |



## 4.1.3 AC Electrical Characteristics



| PARAMETER       | SYMBOL | MIN. | TYP. | MAX. | UNIT | CONDITION    |
|-----------------|--------|------|------|------|------|--------------|
| Clock High Time | tHigh  | 20   | -    | -    | ns   | @ 25MHz XTAL |
| Clock Low Time  | tLow   | 20   | -    | -    | ns   | @ 25MHz XTAL |
| Clock Rise Time | trise  | -    | -    | 10   | ns   | @ 25MHz XTAL |
| Clock Fall Time | tfall  | -    | -    | 10   | ns   | @ 25MHz XTAL |

Table 4.1.3 AC Electrical Characteristics

## 4.1.4 **Rf performance**

## 4.1.4.1 Receiver performance

| No. | Parameter     | Symbol      | Conditions | MIN | ТҮР | MAX | UNIT |
|-----|---------------|-------------|------------|-----|-----|-----|------|
| 1   | Max RX signal | Pin,max     | <0.1% BER  |     | -10 |     | dBm  |
| 2   | 500Kbps       | Sensitivity | <0.1%BER   |     | -88 |     | dBm  |
| 3   | 1Mbps         | Sensitivity | <0.1%BER   |     | -88 |     | dBm  |
| 4   | 2Mbps         | Sensitivity | <0.1%BER   |     | -83 |     | dBm  |

Table 4.1.4.1 RF Receiver performance

## 4.1.4.2 Transmitter performance

| No. | Parameter              | Symbol | Conditions    | MIN | ТҮР | MAX | UNIT |
|-----|------------------------|--------|---------------|-----|-----|-----|------|
| 1   | Max Output Power       | Pmax   | 50ohm antenna |     | 0   | +6  | dBm  |
| 2   | Min Output Power       | Pmin   | 50ohm antenna |     | -16 |     | dBm  |
| 3   | RF power control range | Prange | 50ohm antenna |     | 22  |     | dB   |

Table 4.1.4.2 RF Transmitter performance



## 4.1.5 ypical Crystal

## 4.1.5.1 typical Crystal for M0

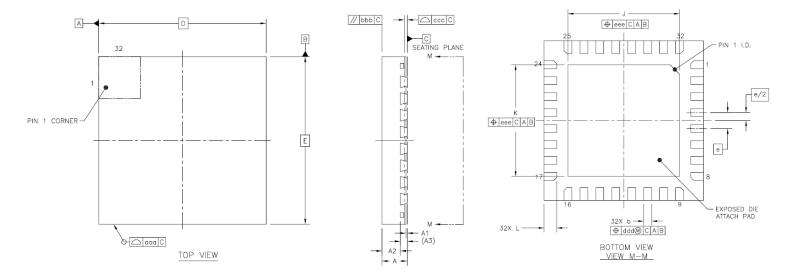
| Crystal      | CLX1                              | CLX2 |  |  |
|--------------|-----------------------------------|------|--|--|
| 2MHz ~ 25MHz | Optional                          |      |  |  |
|              | (Depend on crystal specification) |      |  |  |

Table 4.1.5.1 Typical Crystal for M0

## 4.1.5.2 typical Crystal for RF

| No. | Parameter         | Symbol | Conditions | MIN | ТҮР | MAX | UNIT |
|-----|-------------------|--------|------------|-----|-----|-----|------|
| 1   | Crystal Frequency | Fxtal  |            | 16  | 16  | 16  | MHz  |
| 2   | Tolerance         | Dfxtal |            | -60 |     | +60 | ppm  |
| 3   | Load capacitance  | Cxtal  |            |     | 12  |     | Pf   |

Table 4.1.5.2 typical Crystal for RF


## 4.1.6 Analog to digital conversion

| PARAMETER                       | SYMBOL | MIN.      | TYP. | MAX.       | UNIT  |
|---------------------------------|--------|-----------|------|------------|-------|
| Resolution                      | -      | -         | -    | 12         | Bit   |
| Differential nonlinearity error | DNL    | -         | -    | 1          | LSB   |
| Integral nonlinearity error     | INL    | -         | -    | 2          | LSB   |
| Input Voltage Range             | -      | 0.01*AVDD | -    | 0.99* AVDD | V     |
| ADC clock frequency             | FADC   | -         | -    | 3.2        | MHz   |
| Sample Time                     | TS     | -         | -    | 200        | kS/s  |
| Conversion time                 | TADC   | -         | 16   | -          | Clock |
| Input capacitance               | CIN    | -         | 5.12 | -          | рF    |

Table 4.1.6 Analog to digital conversion



# 5 Package Information



| DESCRIPTION            |   | SYMBOL  | MILLIMETER |       |      |  |  |
|------------------------|---|---------|------------|-------|------|--|--|
|                        |   |         | MIN        | NOM   | MAX  |  |  |
| TOTAL THICKNESS        |   | A       | 0.7        | 0.75  | 0.8  |  |  |
| STAND OFF              |   | A1      | 0          | 0.035 | 0.05 |  |  |
| MOLD THICKNESS         |   | A2      |            | 0.55  | 0.57 |  |  |
| L/F THICKNESS          |   | A3      | 0.203 REF  |       |      |  |  |
| LEAD WIDTH             |   | b       | 0.2        | 0.25  | 0.3  |  |  |
| BODY SIZE              | Х | D       | 5 BSC      |       |      |  |  |
|                        | Y | E       | 5 BSC      |       |      |  |  |
| LEAD PITCH             | e | 0.5 BSC |            |       |      |  |  |
| EP SIZE                | Х | J       | 3.4        | 3.5   | 3.6  |  |  |
|                        | Y | K       | 3.4        | 3.5   | 3.6  |  |  |
| LEAD LENGTH            |   | L       | 0.35       | 0.4   | 0.45 |  |  |
| PACKAGE EDGE TOLERANCE |   | aaa     | 0.1        |       |      |  |  |
| MOLD FLATNESS          |   | bbb     | 0.1        |       |      |  |  |
| COPLANARITY            |   | ccc     | 0.08       |       |      |  |  |
| LEAD OFFSET            |   | ddd     | 0.1        |       |      |  |  |
| EXPOSED PAD OFFSET     |   | eee     | 0.1        |       |      |  |  |
|                        |   |         |            |       |      |  |  |
|                        |   |         |            |       |      |  |  |
|                        |   |         |            |       |      |  |  |
|                        |   |         |            |       |      |  |  |
|                        |   |         |            |       |      |  |  |